
Training school on Autoimmune Neutropenias 2020/2021

GIFT Granulocyte Immunofluorence Test

Francesca Fioredda

Hematology Unit

IRCCS Giannina Gaslini Hospital

ANTIGENS' COMPLEXITY

oi m	fuclear morphology f immature and nature mouse eutrophils	Surface markers in Human Lin-, CD34+, CD36+, CD45RA+, CXCR4+, CXCR2- CD49d ^{bi} , CD34+, CD81 ^{bi} , CD11b-, CD36 ^{bi} , CD24 ^{bi}	Surface markers in Mouse Lin-, Sca1-, CD117 ^{hi} , CD11b-, CD34+, CD16/32+, CXCR4+, CXCR2-, Gr1-, Ly6C- Lin-, CD115-, Flt3-, Ly6C+, CD117 ^{hi} , CD34+,
monocyte progenitor (GMP) Early committed neutrophil progenitor1		CD36 ⁺ , CD45RA ⁺ , CXCR4 ⁺ , CXCR2 ⁻ CD49d ^M , CD34 ⁺ , CD61 ^M , CD11b ⁻ ,	CD117 ^{hl} , CD11b ⁻ , CD34 ⁺ , CD16/32 ⁺ , CXCR4 ⁺ , CXCR2 ⁻ , Gr1 ⁻ , Ly6C ⁻ Lin ⁻ , CD115 ⁻ , Flt3 ⁻ , Ly6C ⁺ , CD117 ^{hl} , CD34 ⁺ ,
neutrophil progenitor1		CD81hi, CD11b-,	Lin ⁻ , CD115 ⁻ , Flt3 ⁻ , Ly6C ⁺ , CD117 ^{hl} , CD34 ⁺ ,
			CD16/32 ⁺ , CD106 ⁻ , CD11b ^{lo} ,
Early committed neutrophil progenitor2 (proNeu2)		CD49d ^{ian} , CD34 ⁻ , CD01 ^{ia} , CD11b ⁻ , CD36 ^{ia} , CD24 ^{bi}	Lin ⁻ , CD115 ⁻ , Plt3 ⁻ , Ly6C ⁺ , CD117 ^{hl} , CD34 ⁺ , CD16/32 ⁺ , CD106 ⁺ , CD11b ^{hl}
Committed proliferative neutrophil precursor (preNeu)		Lin", Siglec8", CD15 ⁺ , CD34 ⁻ , CD66b ⁺ , CD101 ⁻ , CD49d ¹⁰ , CD81 ¹⁰ , CD11b ¹⁰ , CXCR4 ⁺ , CXCR2 ⁻	Lin ⁻ , CD115 ⁻ , Siglec-F ⁻ , CD117 ^{int} , Gr1 ⁺ , CD11b ⁺ , Ly6G ^{lo} , CXCR4 ^{bi} , CXCR2 ⁻
Band Neutrophil		Siglec6", CD66b", CD15", CD33 ^{mid} , CD49d", CD10", CD16 ^{low} , CD101", CD34", CD61 ^{lo} , CD11b ^{lo} , CXCR4", CXCR2"	Lin ⁻ , CD115 ⁻ , Siglec-F ⁻ , CD117 ⁻ , Gr1 ⁺ , CD11b ⁺ , CD101 ⁻ , Ly6G ^{le/} int, CXCR4 ^{le} , CXCR2 ⁻
Mature Neutrophil		Siglec6", CD66b", CD15+, CD49d", CD10", CD101", CD16 ^{bi} , CD34", CD81 ^{bi} , CD11b ^{bi} , CXCR4", CXCR2 [†]	Lin ⁻ , CD115 ⁻ , Siglec-F ⁻ , CD117 ⁻ , Gr1 ⁺ , CD11b ⁺ , CD181 ⁺ , Ly6G ^{hi} , CXCR4 ⁻ , CXCR2 ⁺

Carnevale S, Sem Immun 2020

Type of antibodies

System	Glycoprotein/Gene	Allele	Epitope(s)
HNA-1	CD16b/FcyRIIIb	FCGR3B*01	HNA-1a
(NA1, NA2, SH)		FCGR3B*02	HNA-1b, HNA-1d
		FCGR3B*03	HNA-1b, HNA-1c
		FCGR3B*04	HNA-1a
		FCGR3B*05	HNA-1b variant
	No Glycoprotein	FCGR3B*null	HNA-1 null
HNA-2	CD177	CD177 ^a	HNA-2
(NB1)	No Glycoprotein	No allele	HNA-2 null
HNA-3	CLT2/SLC44A2	SLC44A2*01	HNA-3a
(5b, 5a) ^b		SLC44A2*02	HNA-3b
		SLC44A2*03	HNA-3a variant
HNA-4	CD11b.CD18/ITGAM	ITGAM*01	HNA-4a
(Mart)		ITGAM*02	HNA-4b
HNA-5	CD11a.CD18/ITGAL	ITGAL*01	HNA-5a
(Ond)		ITGAL*02	(HNA-5bw) ^c

Detection of Antibodies Against Neutrophils

Detection of antibodies against surface antigens

- ✓ Radiolabeled (anti IgG, Protein A, Anti IgM)
- ✓ Intact Staphylococci
- ✓ Immunofluorescence
- √ Flow cytometry
- ✓ Enzyme-linked immunoassays

Detection of antibodies effect

- ✓ Agglutination Opsonization
- ✓ Complement Activation
 - antibodies to C3
 - cytotoxicity
- ✓ Antibody dependent cytotoxicity

Work with Neutrophils

Obstacles

- Neutrophils fragility
- Tendency to aggregation in vitro
- Release of autolytic enzymes on handling (contact with glass, temperature, centrifugation)
- Autoactivation and «fake autommunity»
- Decreased number of neutrophils

METHODS TO DETECT ANTIBODIES evolution

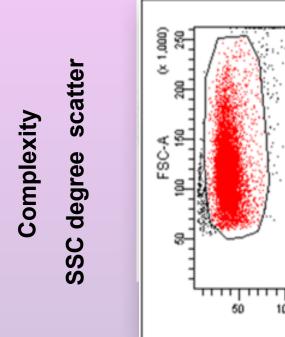

GAT
GIFT/LIFT
GCLT
MAIGA
rHNA 3a/3b
Fluorescente beads

The combination of GIFT and GAT guarantees a standard approach International Granulocyte Immunology Workshop

Flesh B Vox sanguines 2019, Lucas G, Vox Sanguinis 2013, Browne T Int J Immunogenet 2020

GIFT Flow cytometry

Precise measurement of several characteristic of particulate cells

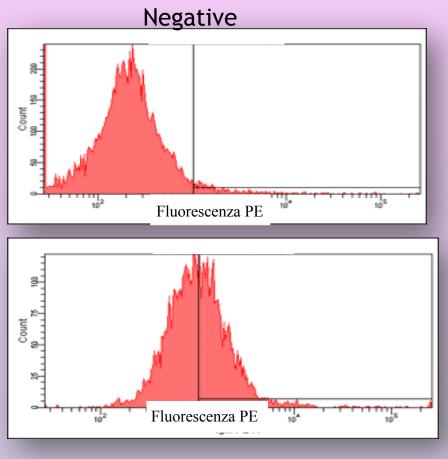

Monoclonal Antibodies allows the recognition of Cluster Designation (CD)

MO Ab against FcR

MO Abs labeled wit fluorochrome FITC or PE

FLOW CYTOMETRY / FACS SCanto

FSC forward scatter Volume


GATE

SSC-A

NEUTROFILI

) 250 (x 1,000)

MO Abs labeled wit fluorochrome FITC or PE

Positive

Indirect GIFT

immunofluorescence test (GIFT)

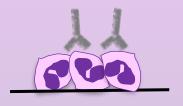
Direct GIFT

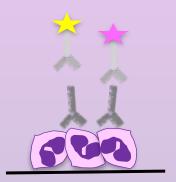
immunofluorescence test (GIFT)

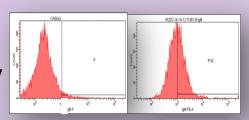
Indirect GIFT

immunofluorescence test (GIFT)

Blood samples


Pooled neutrophils from healthy donors


Patient serum


Antigen/antibody reaction

Fluorescent staining

Reading by Flow

I-GIFT THE TECNIQUE 1

SERUM COLLECTION centrifugation and conservation at -20°C

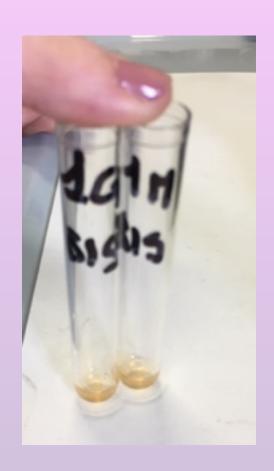
SAMPLE PREPARATION

1) Anticoagulated whole blood coming from a pool of healthy donors (males, preferably 0 Rh) addicted with 6% dextran for 30 ' at 37°C

2) Separation by Fycoll gradient: centrifugation and collection of neutrophils which stand in the bottom Washing with PBS

3) Addition of lysis buffer 10' incubation and centrifugation

Neutrophils ~97% of the product

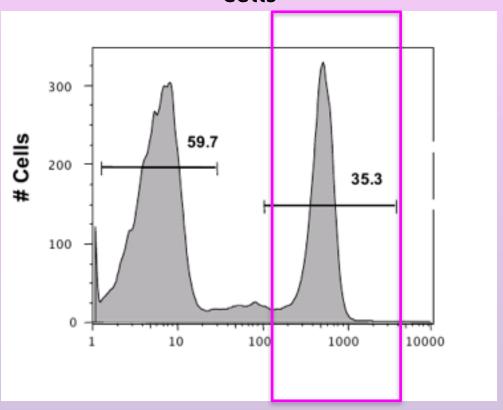

I-GIFT THE TECNIQUE 2

ADESION OF ANTIBODIES

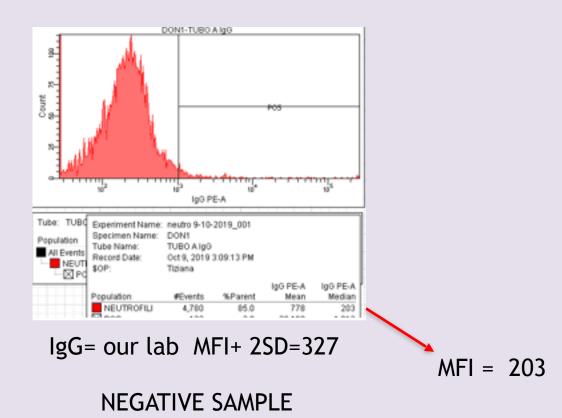
Neutrophils incubated with patient/control serum 1:1 for 20'

STAINING

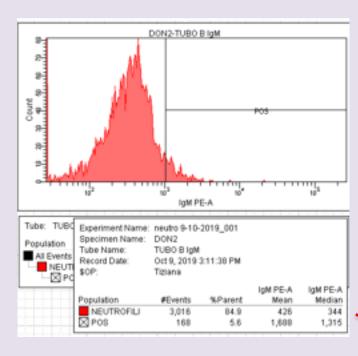
Cells washed twice then incubated at 37°C with Goat F (ab') anti human IgG-PE or Goat F(Ab') and IgM-PE



I-GIFT THE TECNIQUE 3

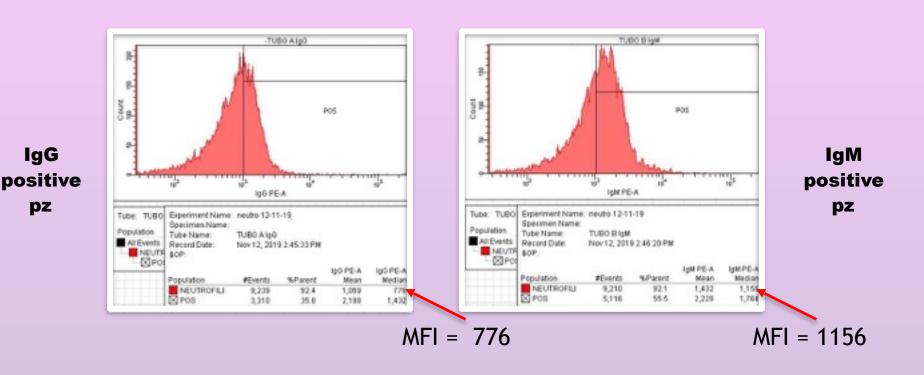

FLOW CYTOMETRY / FACS SCanto

- Intensity of IgG and IgM binding to the neutr Ag is masured by Mean Fluorescence Intensity (MFI)
- Positive serum: MFI 2 SD > than the mean derived by over 100 normal control sera for each Ab (IgG and IgM)


Results expressed as computer generated histograms of percentage of highly fluorescent cells

Flow read out IgG- Donor

Flow read out IgM- Donor



IgM, our lab MFI + 2SD = 519

MFI = 344

NEGATIVE SAMPLE

Flow read out patient

IgG = our lab MFI + 2SD = 327

POSITIVE SAMPLE

IgM, our lab MFI + 2SD = 519

POSITIVE SAMPLE

I-GIFT

Immunofluorescence test (GIFT)
Contribution of IgM detection

180 samples

19% IgG

21% IgG and IgM

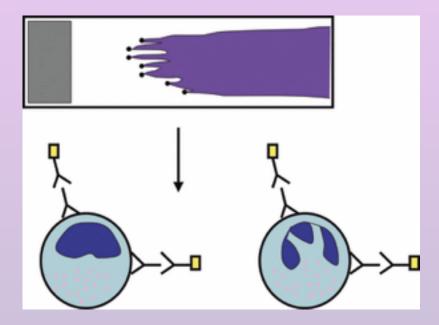
8% IgM

IgM detection increases sensitivity of the test

SENSITIVITY

First Author	No pts	Age at diagnosis (months)	Sensitivity with one test
Lalezari P 1986	121	8 (3-30)	95%
Bux J 1998	240	8 (5-15)	74%
RutiSella BA 2010	72	10 (0-42)	62.5%
Bruin M 1999	21	<12 mo	Only positive
Audrain M 2011	116	16 (3-59)	60%
Wang L 2009	55	9.8 (4-28)	74%
Farruggia P 2015	157	8 (range 0– 54):	62%

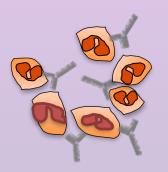
in 26% > by the 3/4 th


82% by the 4th

I-GIFT

immunofluorescence test (GIFT)

Bone marrow


BMIFT 24/45 samples sensitivity 55%, specificity 100%

Direct-GIFT

immunofluorescence test (GIFT)

- ti human IaG +Mo
- Whole blood incubated on ice with FITC- conjugated anti human IgG +Mo
- Disruption RBC
- Flow Cytometry read-out

GIFT

immunofluorescence test (GIFT)

Cons

Direct test

Indirect test

Low numbers of neutrophils

High rate of false negative

Spontanoeus activation of neutrophils

Possible false positive

High n° false positive (ICC)

Need for short sampling – test interval

Bux J, Blood 1998, Taniuchi S J p Ped Hematol Oncol 2002, Porretti L Ped Blood and Cancer 2018, Farruggia P Worl J 2015, Capsoni F

GIFT

immunofluorescence test (GIFT)

Pros

Direct test

Indirect test

Reported good sensitivity

Need low quantity of blood

High Predictive Positive Value

Easy centralization of samples

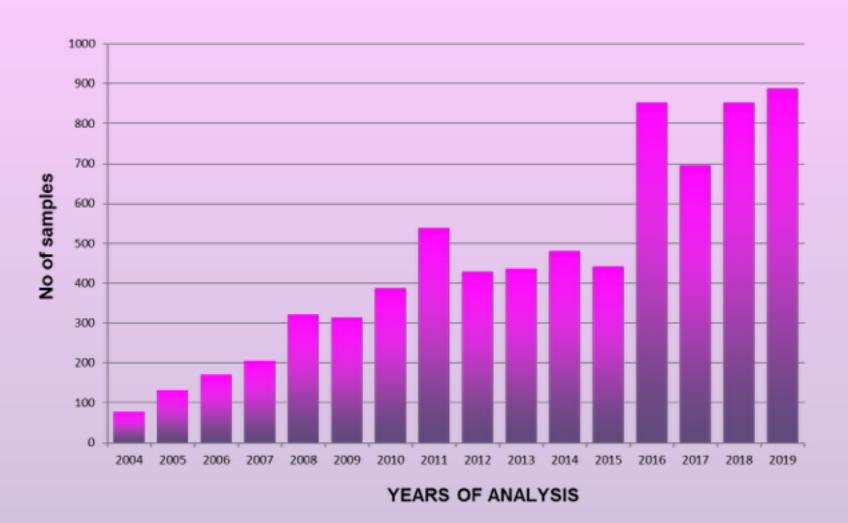
Bux J, Blood 1998, Taniuchi S J p Ped Hematol Oncol 2002, Porretti L Ped Blood and Cancer 2018, Farruggia P Worl J 2015, Capsoni F

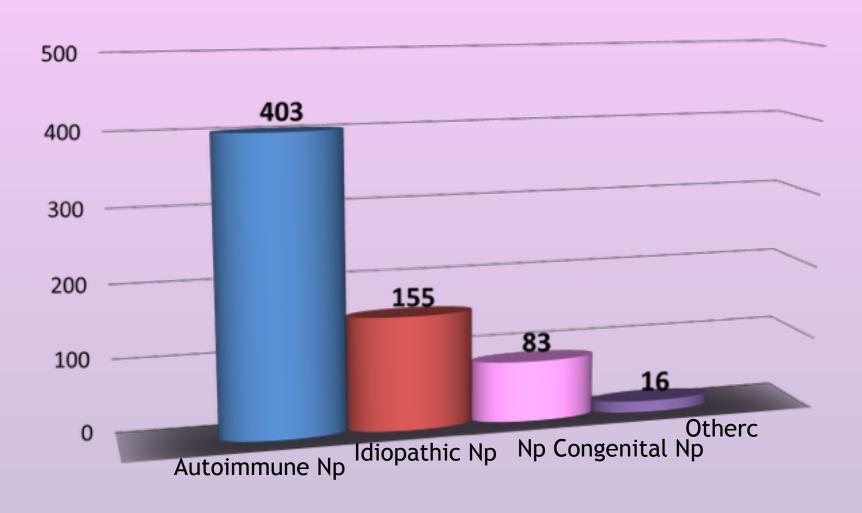
TAILORING THE STRATEGY

GIFT Improves sensibility on repeated testings

GIFT is suitable for centralized analysis of large number of samples

AIEOP centers


Gaslini Laboratory


Italian Reference Lab

SAMPLES FLUX – Unit of Hematology IRCCS Gaslini Italian Reference Lab

ITALIAN NEUTROPENIA REGISTRY 2020 Update

FINAL RECCOMANDATION

Diagnosis of Autoimmune Neutropenia in Child

I-GIFT repeated 3-4 times if negative

Polo di Emato-Oncologia-IMC IRCCS

Carlo Dufour Concetta Micalizzi Elena Palmisani Michaela Calvillo Maurizio Miano

Daniela Guardo Erika Massaccesi **Tiziana Lanza**

Paola Terranova Marina Lanciotti

