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SUMMARY

Increasing evidence has demonstrated that small
nucleolar RNAs (snoRNAs) play important roles in
tumorigenesis. We systematically investigated the
expression landscape and clinical relevance of
snoRNAs in >10,000 samples across 31 cancer types
from The Cancer Genome Atlas. We observed overall
elevated expression of snoRNAs and their ribonu-
cleoproteins in multiple cancer types. We showed
complex regulation of snoRNA expression by
their host genes, copy number variation, and DNA
methylation. Unsupervised clustering revealed that
the snoRNA expression subtype is highly concordant
with other molecular/clinical subtypes. We further
identified 46 clinically relevant snoRNAs and experi-
mentally demonstrated functional roles of SNORD46
in promoting cell proliferation, migration, and in-
vasion. We developed a user-friendly data portal,
SNORic, to benefit the research community. Our
study highlights the significant roles of snoRNAs in
the development and implementation of biomarkers
or therapeutic targets for cancer and provides a valu-
able resource for cancer research.

INTRODUCTION

Small nucleolar RNAs (snoRNAs) are non-coding RNAs with

60–300 nt in length (Jorjani et al., 2016). They are primarily clas-

sified into C/D box snoRNAs and H/ACA box snoRNAs (Balakin

et al., 1996; Kiss, 2002) and are associated with a set of core
1968 Cell Reports 21, 1968–1981, November 14, 2017 ª 2017 The A
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proteins named ribonucleoproteins (RNPs) to form stable and

functional snoRNP particles (Reichow et al., 2007). C/D

snoRNAs are associated with core proteins, including SNU13,

NOP56, NOP58, and the methyltransferase FBL to guide

20-O-methylation of target molecules (Spacková et al., 2010;

Szewczak et al., 2005), whereas H/ACA snoRNAs are associated

with core proteins, including NHP2, NOP10, GAR1, and the

pseudouridine synthase DKC1 to guide pseudouridylation of

target molecules (Kiss et al., 2010). Additionally, small Cajal

body-specific RNAs (scaRNAs) are a specific subset of snoRNAs

that accumulate in Cajal bodies and guide the post-transcrip-

tional modification of spliceosomal RNAs (Tycowski et al., 2009).

In mammals, the majority of snoRNAs are encoded within in-

trons of protein coding or non-coding genes, which are called

‘‘host genes’’ (Bachellerie et al., 2002). Host genes may affect

snoRNA expression through co-transcription (Filipowicz and

Pogaci�c, 2002). Copy number variation (CNV) is a key regulator

of gene expression and has been widely investigated for pro-

tein-coding genes and non-coding genes (Zack et al., 2013).

DNA methylation is a common epigenetic mechanism that regu-

lates gene expression (Yang et al., 2014). These findings suggest

that snoRNA expression may be regulated by host genes, CNV,

and DNA methylation.

Emergingevidencehas revealed thesignificanceof snoRNAs in

oncogenesis (Krishnan et al., 2016;Williams andFarzaneh, 2012).

For example, SNORD78 (C/Dbox) is overexpressed in non-small-

cell lung cancer and prostate cancer (Martens-Uzunova et al.,

2015; Zheng et al., 2015). SNORD50A/B (C/D box), which can

directly bind and inhibit K-Ras, is deleted across multiple cancer

types (Siprashvili et al., 2016). Furthermore, increased SNORA42

(H/ACA box) expression is an independent prognostic factor for

overall survival times among cancer patients (Okugawa et al.,

2017). SNORA55 (H/ACA box) silencing in prostate cancer cell
uthor(s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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lines significantly inhibits cell proliferation and migration (Crea

et al., 2016). These findings highlight the potential roles of

snoRNAs in tumorigenesis, regardless of their classification.

Despite the emerging knowledge about the role of snoRNAs in

cancer, the expression landscape and clinical relevance of

snoRNAs in cancer have not been investigated systematically.

Taking advantage of multiple ‘‘omic’’ data from The Cancer

Genome Atlas (TCGA), we developed a computational pipeline

and characterized the snoRNA expression profiles for a large

number of samples in 31 cancer types.

RESULTS

Expression Landscape of snoRNAs across Different
Cancer Types
Wedevelopeda computational pipeline to comprehensively quan-

tify snoRNA expression levels in human cancer (Figure S1A). We

integrated the latest annotations from The University of

California, Santa Cruz (UCSC) Genome Browser (hg19) and

GENCODE (version 24) and obtained 1,524 unique snoRNA

genes. Based on the snoRNA classification information from

UCSC Genome Browser, Rfam, and Ensembl, we classified the

snoRNAs into 1,033 C/D box snoRNAs, 438 H/ACA box

snoRNAs, and 53 scaRNAs. ThroughmappingmicroRNA (miRNA)

sequencing (miRNA-seq) reads to snoRNAs in 9,931 samples

across 31 TCGA cancer types (Table S1) and 663 related adjacent

normal samples (Figure 1A), we identified 465 detectable

snoRNAswith an average number of reads per kilobase permillion

mapped reads (RPKM) R1 across all tumor samples (Figure 1B).

Among these snoRNAs, we observed that some snoRNAs were

highly expressed across all cancer types. The top 5% highly ex-

pressed snoRNAs were correlated with protein-coding genes

that are enriched in several biological processes, including the

metabolic process and cellular process (Figure S1B), indicating

that snoRNAs may be involved in various biological processes.

Furthermore, we performed cross-tumor clustering to examine

whether snoRNAs have a tumor-type-specific expression profile.

We observed that some snoRNAs are highly expressed in specific

cancer types, e.g., kidney renal clear cell carcinoma (KIRC) and

thyroid carcinoma (THCA) (Figure S1C). Among the detectable

snoRNAs, there were 319 C/D box snoRNAs, 123 H/ACA box

snoRNAs, and 23 scaRNAs. We observed significantly higher

expression levels of C/D box snoRNAs (median log2(RPKM) =

6.2; interquartile range [IQR] = 3.1–8.3) than H/ACA box snoRNAs

(median log2(RPKM) = 3.4; IQR = 2.1–4.7) and scaRNAs (median

log2(RPKM) = 3.3; IQR = 2.0–5.2; Kruskal-Wallis test; p = 1.67 3

10�11; Figure 1C). This may due to the shorter length distribution

of C/D box snoRNAs (t test; p = 6.59 3 10�42; Figure S1D), and

miRNA-seq might be biased toward shorter snoRNAs. We further

examined the correlations between TCGA tumor purity (calculated

by ESTIMATE, which uses gene expression signatures to infer the

fraction of stromal and immune cells in tumor samples; Yoshihara

et al., 2013) and total snoRNA expression for each cancer type.

Overall, we observed weak or absent correlations (Spearman cor-

relation jRsj < 0.3), suggesting that cell origin (e.g., immune cells

and stromal cells) has limited effects on snoRNA expression (Fig-

ure S2). Also, we keep in mind that the tumor purity score is used

to partially estimate tumor heterogeneity (Carter et al., 2012; Yosh-
ihara et al., 2013). Further investigation of the effects of tumor het-

erogeneity on snoRNA expression will be necessary, e.g., by sin-

gle-cell sequencing (Patel et al., 2014; Wang et al., 2014).

We examined the global expression of the total snoRNAs in

14 cancer types with paired tumor and normal samples (Fig-

ure 1D). We observed overexpression of the total snoRNAs in

13 out of 14 cancer types surveyed, including breast invasive

carcinoma (BRCA) (fold change [FC] = 1.77; paired t test;

p = 1.8 3 10�14), KIRC (FC = 1.87; p = 1.4 3 10�23), and pros-

tate adenocarcinoma (PRAD) (FC = 3.39; p = 6.9 3 10�14).

These results suggest global overexpression of total snoRNAs

across multiple cancer types. We noticed a few downregula-

tions in paired normal/tumor samples, which we believe to be

largely due to individual variation in patient data, as such situ-

ations are common in cancer research (Fu et al., 2014; Liu

et al., 2016).

Functional Roles of snoRNA RNP in Human Cancer
Given the overall upregulation of total snoRNA expression inmul-

tiple cancer types and snoRNA association with RNPs to exert

their functions, we systematically assessed the alterations of

RNPs across different cancer types. We observed that the

expression levels of all RNPs, except SNU13, were significantly

elevated in at least one cancer type (FCR 1.5 and false discovery

rate [FDR] < 0.05; Figure 2A).We showed that FBL is upregulated

in four cancer types. Furthermore, we observed that NOP58,

NOP56, and DKC1were overexpressed in more than five cancer

types, suggesting their consistent oncogenic roles in cancer. In

addition, we observed that RNPs were associated with patient

prognosis and that the majority of overexpressed RNPs were

associated with poor survival (Figure 2B). For example, high

expression of NOP58 was associated with poor survival in adre-

nocortical carcinoma (ACC) (univariate Cox test; p = 6.83 10�6;

Figure 2B), high expression of NOP56 was associated with poor

survival in KIRC (p = 2.6 3 10�15), and high expression of DKC1

was associated with poor survival in lower grade glioma (LGG)

(p =2.6310�6). Interestingly,most of the significant associations

were found in KIRC, kidney renal papillary cell carcinoma (KIRP),

and LGG. This may be due to the variations in survival data from

TCGA.For example, the follow-up time is short forBRCAsamples

(Cancer Genome Atlas Network, 2012).

We observed elevated expression of both total snoRNAs and

RNPs across different cancer types. Therefore, we further inves-

tigated the associations between total C/D and H/ACA box

snoRNAs and their corresponding RNPs. We observed an

overall positive correlation for both C/D box and H/ACA box

snoRNAs (Figure 2C). For example, FBL is highly correlated

with C/D box snoRNAs in 7 cancer types, whereas DKC1 is

highly correlated with H/ACA box snoRNAs in 14 cancer types.

Our results showed that RNPs were strongly correlated with

snoRNAs, suggesting their co-activation and synergy in cancer.

Further analysis of the protein levels of RNPs will be necessary

due to the lack of protein expression levels for RNPs in TCGA.

Regulation of snoRNA Expression by Host Genes, CNV,
and DNA Methylation
To understand the potential regulation of snoRNA expression,

we examined the distribution of host genes for snoRNAs. There
Cell Reports 21, 1968–1981, November 14, 2017 1969
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Figure 1. Overview of snoRNA Expression in Human Cancer

(A) Number of tumor and normal samples analyzed in this study.

(B) Number of detectable snoRNAs in each cancer type and the global expression profiles of snoRNAs across different cancer types. Each column represents one

cancer type, and each row represents a snoRNA grouped by snoRNA type. Color represents the snoRNA expression level.

(C) Expression of different types of detectable snoRNAs.

(D) Expression of total snoRNAs between paired tumor and normal samples. The boxes show the median ±1 quartile, with each point representing one sample.

See also Figures S1 and S2 and Table S1.
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A Figure 2. Expression Landscape of snoRNA

RNPs

(A) Expression difference for ribonucleoproteins

(RNPs) between paired tumor and normal sam-

ples. Only cancer types with more than 10 paired

tumor-normal samples are shown.

(B) Prognostic values of RNPs across multiple

cancers.

(C) Correlations between total C/D box, H/ACA

snoRNAs, and their RNPs in tumor samples. Only

cancer types with at least one significant correla-

tion are shown.
were 703, 151, and 670 snoRNAs in protein-coding genes, non-

coding genes, and without host genes, respectively. Detectable

snoRNAs were enriched in host genes (318/854 versus 147/670;

chi-square test; p = 2.933 10�7; Figure 3A), and they were more

enriched in non-coding genes than in protein-coding genes

(78/151 versus 240/703; chi-square test; p = 0.011). Further-

more, snoRNAs in non-coding genes had higher expression

levels than snoRNAs in protein-coding genes and snoRNAs

without host genes (Kruskal-Wallis test; p = 4.83 3 10�9; Fig-

ure 3B). snoRNAs in non-coding genes had a peak expression

of 7.3, whereas the peak expression of snoRNAs in protein-cod-

ing genes and snoRNAs without host genes were 4.2 and 2.8,

respectively (Kolmogorov Smirnov test; p = 0.001; Figure 3C).

The proportion of snoRNAs highly correlated with the host genes

ranged from 6/441 (1.4%) in THCA to 113/472 (23.9%) in testic-

ular germ cell tumors (TGCT) (jRsj R 0.3 and FDR < 0.05; Fig-

ure 3D). For example, there were 10 snoRNAs located in introns
Cell Report
of GAS5 (Figure S3A) that were positively

correlated withGAS5 in at least 12 cancer

types (Figure S3B).

CNV is an important factor in the

regulation of gene expression (Gamazon

and Stranger, 2015); thus, we systemati-

cally evaluated the effects of CNV on

snoRNA expression. We observed a var-

ied effect that ranged from 2/479 (0.4%)

of snoRNAs in uterine corpus endometrial

carcinoma (UCEC) to 147/386 (38.1%)

of snoRNAs in kidney chromophobe

(KICH) that were correlated with their

CNV (jRsj R 0.3 and FDR < 0.05; Fig-

ure 3D). For example, expression levels

of SNORD56 and SNORD119 showed

significantly positive correlation with

their CNVs in 19 and 17 cancer types,

respectively.

We evaluated the correlation of

snoRNAs with DNA methylation, which

is an epigenetic modification involved

in regulating gene expression (Zemach

et al., 2010). We observed significant cor-

relationswithDNAmethylation that ranged

from 1/425 (0.2%) of snoRNAs in cholan-

giocarcinoma (CHOL) to 191/472 (40.4%)
of snoRNAs in TGCT (jRsj R 0.3 and FDR < 0.05; Figure 3D).

For example, the methylation level of probe cg06726167, located

43 bp upstreamof SNORD118,was negatively correlatedwith the

expression of SNORD118 in 24 cancer types.

We further examined whether snoRNAs were regulated by two

or more of the factors mentioned above. Of all the detectable

snoRNAs in each cancer type, from 18/441 (4.1%) of snoRNAs

in THCA to 268/450 (59.5%) of snoRNAs in uterine carcinosar-

coma (UCS) were correlated with at least one factor. Only a small

proportion of snoRNAs were co-regulated by multiple factors,

ranging from 0 in THCA to 107/450 (23.8%) in UCS (Figure 3D).

Interestingly, there were only a few hits/correlations in THCA,

which may be due to the physiological features of THCA.

We also observed larger numbers of correlations in several

cancer types, including ACC, UCS, TGCT, and KICH, which

may be driven by the smaller sample sizes of those datasets

(Figure S3C).
s 21, 1968–1981, November 14, 2017 1971
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Figure 3. Regulation of snoRNA Expression

(A) Number of snoRNAs with host genes (protein-coding genes and non-coding genes) and without host genes. The three bars represent total numbers of

snoRNAswith host genes (protein-coding genes and non-coding genes) and without host genes. The color bars represent detectable snoRNAs in each category,

whereas gray bars represent undetectable snoRNAs in each category.

(B) Expression of snoRNAs (boxplot).

(C) Expression of snoRNAs (density plot).

(D) Number of significant correlations between snoRNA expression and their host genes, CNV, and DNA methylation.

See also Figure S3.
Biomedical Significance of Subtypes Defined by snoRNA
Expression
Various omic data from multiple platforms have been used

to classify tumor subtypes (Han et al., 2014; Hoadley et al.,

2014). To investigate the biomedical significance of subtypes

defined by snoRNA expression, we selected 200 (on average,
1972 Cell Reports 21, 1968–1981, November 14, 2017
79% C/D box snoRNAs, 20% H/ACA box snoRNAs, and 1%

scaRNAs; Figure S4A) of the most variable snoRNAs to classify

tumor samples for each cancer type into subtypes using

ConsensusClusterPlus (Wilkerson and Hayes, 2010). Overall,

we observed high concordance between snoRNA subtypes

and other molecular subtypes, finding that 79 out of the 105
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Figure 4. Concordance between snoRNA Expression Subtype and Other Subtypes

(A) Concordance between snoRNA expression subtypes (based on 200 snoRNA signature) and molecular subtypes defined by other molecular data in TCGA

cancer types with more than 100 samples. Color indicates statistical significance of the chi-square test.

(B) SnoRNA expression subtype in stomach adenocarcinoma (STAD), including subtype 1 (orange; n = 152), subtype 2 (green; n = 116), and subtype 3

(blue; n = 141).

See also Figure S4.
chi-square tests were significant (Figure 4A), especially in LGG,

sarcoma (SARC), BRCA, KIRC, esophageal carcinoma (ESCA),

and KIRP, with significant concordance across all platforms.

Interestingly, almost all snoRNA subtypes were concordant

with miRNA subtypes. This was likely due to both miRNA and

snoRNA expression levels being quantified from miRNA-seq

data. The different proportions of tumor cells in the specimens

from TCGA may have some impact on genomic profiling (Han

et al., 2014). The snoRNA subtypes were also highly concordant

with the tumor stage in five cancer types, including ACC, BRCA,

KIRC, stomach adenocarcinoma (STAD), and THCA (Fig-

ure S4B). Furthermore, snoRNA subtypes demonstrated prog-

nostic value in stratifying clinical outcomes in four cancer types
(Figure S4C), including pancreatic ductal adenocarcinoma

(PAAD) (log rank test; p = 0.019), lung squamous cell carcinoma

(LUSC) (p = 0.039), LGG (p = 0.002), and KIRC (p = 2 3 10�4).

Taking STAD as an example, we classified 409 STAD samples

into three distinct subtypes based on snoRNA expression: sub-

type 1 (orange; n = 152); subtype 2 (green; n = 116); and subtype

3 (blue; n = 141; Figure 4B). The snoRNA expression subtype

showed high concordance with the integrated molecular

subtype defined by TCGA (Cancer Genome Atlas Research

Network, 2014), which indicated that subtype 1 is enriched for

samples with chromosomal instability (CIN) (magenta), whereas

subtype 3 is enriched for samples genomically stable (GS) (cyan).

snoRNA subtypes also showed high concordance with tumor
Cell Reports 21, 1968–1981, November 14, 2017 1973
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stage (chi-square test; p = 1.84 3 10�5) and other molecular

subtypes, including miRNA expression (p = 2.45 3 10�67),

mRNA expression (p = 1.69 3 10�12), and protein expression

(p = 2.71 3 10�7). The concordance of certain subtypes may

have clinical relevance (Hoadley et al., 2014), and our results

suggest that snoRNA subtypes are an additional dimension for

classifying cancer-related molecular subtypes.

Identification of Clinically Relevant snoRNAs
To comprehensively identify clinically relevant snoRNAs, we

performed a series of analyses to identify snoRNAs that show

differential expression in paired tumor and normal samples,

among tumor subtypes, among tumor stages, or associated

with patient survival time. We identified 433 snoRNAs that

were differentially expressed between paired tumor-normal

samples in at least one cancer type. We further identified 279

snoRNAs that were differentially expressed among established

tumor subtypes, 203 snoRNAs differentially expressed among

tumor stages, and 355 snoRNAs that were associated with

patient survival times. Among the snoRNAs associated with

patient survival times, there were 229 C/D box snoRNAs, 108

H/ACA box snoRNAs, and 18 scaRNAs. The number of clinically

relevant snoRNAs ranged from 39 in ACC to 329 in UCEC. To pri-

oritize snoRNAs through powerful pan-cancer analyses (Han

et al., 2015; Wang et al., 2017), we obtained 46 snoRNAs that

show clinical relevance in at least 12 cancer types (Figure 5A).

For example, SNORD78, which has been reported to be overex-

pressed in non-small-cell lung cancer and prostate cancer (Mar-

tens-Uzunova et al., 2015; Zheng et al., 2015), showed clinical

relevance in 14 cancer types, and SNORD46, which was re-

ported as a prognostic marker (Krishnan et al., 2016), showed

upregulation in 8 cancer types (Figure S5A).

To further explore the potential function of clinically relevant

snoRNAs, we obtainedmRNAswith expression levels that corre-

lated with clinically relevant snoRNAs in at least 10 cancer types.

These mRNAs were enriched in gene ontology (GO) terms, such

as ‘‘ribonucleoprotein complex biogenesis’’ and ‘‘rRNA pro-

cessing,’’ which confirmed the functional roles of snoRNAs on

rRNA modification. Interestingly, we also observed enrichment

in several GO terms, including ‘‘mitotic nuclear division’’ and

‘‘DNA damage response, signal transduction by p53 class medi-

ator’’ (Figure 5B), suggesting that clinically relevant snoRNAs

may influence these biological processes to affect cancer initia-

tion and progression. We further identified several genes that

were consistently correlated with clinically relevant snoRNAs in

more than 10 cancer types (Figure S5B). For example, CKS2

(CDC28 protein kinase regulatory subunit 2), which binds to
Figure 5. Clinically Relevant snoRNAs across Multiple Cancer Types

(A) 46 clinically relevant snoRNAs identified inmore than 12 cancer types. For each

subtypes (fold change [FC]R 2 and FDR < 0.05), green box indicates significant d

indicates association with 5-year survival (FC R 2 and FDR < 0.05), yellow box in

(FC R 2 and FDR < 0.05), and white box represents not significant. Numbers

right panel.

(B) Functional enrichment of mRNAs highly correlated with 46 clinically relevant

(C) Network of correlations between 46 clinically relevant snoRNAs and key

degree R10).

See also Figure S5 and Table S2.
the catalytic subunit of cyclin-dependent kinases (Yu et al.,

2015), was positively correlated with 15 clinically relevant

snoRNAs, such as SNORA56, SNORD14C, etc.

Furthermore, we assessed the correlation between clinically

relevant snoRNAs and key cancer proteins. We observed a total

of 10,601 significant correlations between 46 clinically relevant

snoRNAs and 226 proteins and phosphoproteins in 31 cancer

types (jRsj R 0.3 and FDR < 0.05). For example, FOXO3

(forkhead box O3), a transcription factor that triggers apoptosis

(Haoues et al., 2014), was negatively correlated with several

snoRNAs, including SCARNA5, SNORA71B, and SNORD46.

CCNB1 (cyclin B1), which leads to cell proliferation by binding

to CDK1 (Yuan et al., 2006), was positively correlated with

several snoRNAs, including SNORA71B, SNORA71D, and

SNORD46 (Figure 5C). We randomly selected 46 non-clinically

relevant snoRNAs with matched snoRNA type and expression

levels to calculate the correlation for 1,000 simulations. We

observed a significantly higher number of correlations for

clinically relevant snoRNAs (permutation test; p < 1 3 10�3;

Figure S5C). This result indicates a strong correlation between

clinically relevant snoRNAs and key cancer proteins, further sug-

gesting the significant roles of these snoRNAs in tumorigenesis.

Functional Effects of Clinically Relevant snoRNAs
To determine the functional roles of clinically relevant snoRNAs

in human cancer, we prioritized snoRNAs based on the following

criteria: (1) sequence length longer than 100 bp; (2) no repetitive

elements in the snoRNA sequence; and (3) relatively high expres-

sion level. We selected the top 10 snoRNAs (Table S2) and iden-

tified their interacting proteins through RNA pull-down, followed

by mass spectrometry (MS) analysis (Xing et al., 2014). Proteins

that associated with the beads (negative control) were consid-

ered to be unspecific binding, with Mascot protein scores of

200 or less. We used the RNA oligonucleotide poly(A)25 as an

additional negative control because snoRNAs contain no poly(A)

tails (Kim et al., 2006). Our data indicate that poly(A)25 associated

with a panel of RNA-binding proteins, which were considered to

be general RNA-protein bindings, but not specific interactions

with snoRNA sequences (Figure 6A). The 30 UTR of the androgen

receptor (AR), which can bind with the ELAV-like RNA binding

protein 1 (ELAV1; also known as HuR; Blaxall et al., 2000), was

included as a positive control. We confirmed the association be-

tween the 30 UTR of AR and ELAV1 in our assay (Figure 6A). Our

MS data shed light on the potential cellular effects of snoRNAs in

regulating non-receptor tyrosine kinase (SNORD15A), small

nuclear RNP complex assembly (SCARNA5, SNORD15A, and

SNORD9), metabolic pathway regulation (SNORD16 and
cancer type, red box indicates significant differential expression among tumor

ifferential expression among tumor stages (FCR 2 and FDR < 0.05), blue box

dicates significant differential expression between tumor and normal samples

of cancer types (aquamarine bar) and expression (orange bar) are plotted in

snoRNAs in at least 10 cancer types.

cancer proteins (significant correlation in R3 cancer types and nodes with

Cell Reports 21, 1968–1981, November 14, 2017 1975
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SNORD71D), and cell apoptosis (SNORD71B and SNORD71D).

We further filtered out small nuclear RNP polypeptides and het-

erogeneous nuclear RNPs, including RUXGL, RUXG, RUXE,

RUXF, and HNRPD, which are unlikely to play specific functions

in cancer. We identified three snoRNAs that were associated

with two interesting proteins. SNORD15Awas shown to be asso-

ciated with LYN (Figure 6A), which is a member of the Src family

of protein tyrosine kinases that modulate various cellular

outputs, including proliferation, invasion, apoptosis, and meta-

bolic reprogramming (Choi et al., 2010; Ingley, 2012). SNORD46

and scaRNA5 were associated with PAPP1 (pappalysin-1; also

known as pregnancy-associated plasma protein A), which has

been recently documented as an oncogene that promotes the

initiation of breast cancer (Takabatake et al., 2016). SNORD46

was reported to be a prognostic marker based on survival anal-

ysis in breast cancer, without any functional assays for further

studying the functional effects (Krishnan et al., 2016). Therefore,

SNORD15A and SNORD46, with higher scores for PAPP1, were

chosen as candidate snoRNAs for further experiments.

To demonstrate the functional roles of snoRNAs, we knocked

down snoRNAs in cancer cell lines using antisense oligonucleo-

tide-based strategies. Locked nucleic acids (LNAs) have been

used to deplete non-coding RNAs in cells and mouse models

(Li et al., 2017; Lin et al., 2016), so we designed and tested the

knockout efficiency of LNAs against SNORD15A and SNORD46.

However, all the LNAs we tested against SNORD15 failed to

exhibit detectable knockdown of SNORD15. We considered a

few possible reasons for this outcome: first, the potential sec-

ondary structure might affect the binding between LNAs and

snoRNAs. Although SNORD15A and SNORD46 are structurally

similar (Figure S5D; predicted by RNAfold; Gruber et al., 2008),

SNORD15A contains a strong base-pairing stem, which might

prevent hybridization between LNAs and the following RNase

H digestion (Kurreck et al., 2002). The second possibility is that

the snoRNA-binding proteins may prevent the recognition of

LNAs. As shown in Figure 6, SNORD15A was associated with

LYN, RUXG, and RUXGL proteins; SNORD46 was associated

with PAPP1, which suggests that SNORD15A might be abun-

dantly masked by proteins, which may lead to low knockdown

efficiency. Our LNAs targeting SNORD46 showed efficient

knockdown of SNORD46 in the breast cancer cell line MDA-

MB-231 and the lung cancer cell line A549 (Figures 6B

and 6D). Interestingly, knockdown of SNORD46 led to a signifi-

cant reduction in cell viability in both cell lines tested, which

was not observed in cells transfected with a scrambled control

(Figures 6C and 6E). In addition, depletion of SNORD46 led to

impaired cell migration and invasion in both MDA-MB-231 and
Figure 6. SNORD46 Functions as an Oncogene in MDA-MB-231 and A

(A) Identification of protein candidates interacting with snoRNAs revealed by ma

spectrum query. ScoreR200 is considered a significant peptide assignment. The

was used as a negative control. The 30 UTR of the androgen receptor (AR) was u

(B and D) Real-time PCR detection of snoRD46 expression with 3 biological repl

control (Scr LNA) or snoRD46 LNAs.

(C and E) Cell proliferation assays with 5 biological replicates in MDA-MB-231 c

(F and G) Cell migration assays with 3 biological replicates in MDA-MB-231 cells

(H and I) Cell invasion assays with 3 biological replicates in MDA-MB-231 cells (

*p < 0.05; **p < 0.01; and ***p < 0.001. The scale bar represents 200 mm. Data a
A549 cell lines (Figures 6F–6I). Taken together, our data indicate

that SNORD46 is associated with oncogenesis and plays

important roles in maintaining the proliferation and mobility of

cancer cells.

A User-Friendly Data Portal to Explore snoRNAs in
Cancer
To facilitate broad access to these snoRNA data and associated

data, we developed a user-friendly data portal, snoRNA in can-

cer (SNORic) (http://bioinfo.life.hust.edu.cn/SNORic). SNORic

provides 4 modules: ‘‘summary’’; ‘‘snoRNA-based analysis’’;

‘‘gene-based snoRNAs’’; and ‘‘download’’ (Figure 7A). The sum-

mary module shows an overview of datasets used in SNORic

with a detailed description for each cancer type (e.g., number

of samples, reads, and detectable snoRNAs). The snoRNA-

based analysis module provides analyses for each snoRNA

across different cancer types. In this module, users can obtain

expression data for any annotated snoRNA and examine

whether the snoRNA is clinically relevant (Figure 7B). In addition,

users can examine the correlation between snoRNAs and CNV,

DNA methylation, mRNAs, RNA splicing events, and protein

expression. The gene-based snoRNAs module allows users to

search a gene to obtain its correlated snoRNAs (jRsj R 0.3;

FDR < 0.05; Figure 7C). The download module allows users to

download expression profiles for all snoRNAs. SNORic includes

the expression levels of 1,524 snoRNAs across >10,000 samples

for browsing, analyzing, visualizing, and downloading, so that

the users can further test their hypotheses. We also included

genes that are significantly correlated with snoRNAs at the

mRNA expression level (�18,000 mRNAs), protein expression

level (226 proteins), and splicing events (�41,290 splicing

events) across 31 cancer types. This valuable resource will be

of significant interest to the research community (Li et al., 2015).

DISCUSSION

miRNA-seq is not designed for a full snoRNA repertoire, as

miRNA-seq reads are too short (15–30 bp) to distinguish snoRNA

from snoRNA fragments (Krishnan et al., 2016), which may have

different biological functions. Thus, it will be necessary to validate

full-length snoRNAs from miRNA-seq data for further investiga-

tion. However, this method has been applied in several studies

(Gao et al., 2015; Krishnan et al., 2016; Zheng et al., 2016) and

is probably themost appropriateway toquantify snoRNAexpres-

sion profiles from TCGA omic data. Among 1,524 annotated

snoRNAs, we detected 1,520 (99.7%) snoRNAs with at least 1

read, which is far more than other studies/platforms. For
549 Cells

ss spectrometry analysis. The y axis shows the Mascot protein score for each

biotin-labeled poly(A)25 and beads-only group without any biotin-labeled RNA

sed as positive control.

icates in MDA-MB-231 cells (B) and A549 (D) transfected with scrambled RNA

ells (C) and A549 (E) transfected with Scr LNA or snoRD46 LNAs.

(F) and A549 (G) transfected with Scr LNA or snoRD46 LNAs.

H) and A549 (I) transfected with Scr LNA or snoRD46 LNAs.

re represented as mean ± SD. See also Figure S5.
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example, snoRNAome detected 235 (21.0%) out of 1,118 an-

notated snoRNAs from ENCODE small RNA-seq data (Jorjani

et al., 2016), whereas a recent study detected 768 (75.4%)

snoRNAs out of 1,018 Ensembl-annotated snoRNAswith at least

1 read (Krishnan et al., 2016). In contrast, we only detected 19

snoRNAs from TCGA RNA-seq data with the expression level

(RNA-seq by expectation maximization) R 1. The miRNA-seq-

based analysis is by nomeans perfect, but it allows us to system-

atically investigate the expression landscape and clinical rele-

vanceof snoRNAs inmore than10,000samples across31cancer

types. Our analyses lay the groundwork for an integrated func-

tional interpretation to illuminate the significant roles of snoRNAs.

To confirm the accuracy of our computational pipeline, we

compared our results with those from an independent study,

which identified 16 snoRNAs differentially expressed in lung can-

cer by both miRNA-seq and qRT-PCR (Gao et al., 2015). Among

these 16 snoRNAs, our analysis also identified 14 of them as

differentially expressed in TCGA lung cancer data. We further

compared our results with several other independent sample

cohorts and studies. We observed overall elevations in the

expression of snoRNAs, including SNORD126, SNORA23, and

SNORA42, in multiple cancer types, which are consistent with

the results from published studies (Cui et al., 2017; Fang et al.,

2017; Okugawa et al., 2017).

We also demonstrated the clinical relevance of snoRNA

expression signatures and individual snoRNAs. Our unsuper-

vised clustering showed that tumor subtypes defined by snoRNA

expression have extensive and strong concordance with the

subtypes defined by other molecular data. Furthermore, we

identified 46 individual snoRNAs that have clinical relevance

and which may play significant roles in tumorigenesis. We iden-

tified SNORD46, which is overexpressed in tumor samples in

eight cancer types. We further experimentally demonstrated

that knockdown of SNORD46 can lead to a significant reduction

in cell viability and impaired cell migration and invasion in

two independent cell lines, the breast cancer cell line MDA-

MB-231 and the lung cancer cell line A549. Taken together,

our combined computational and experimental analyses indi-

cate that SNORD46 is an oncogene. In addition, we attempted

to knock out SNORD15A and SNORD46 by CRISPR/cas9-

mediated genomic editing (Platt et al., 2014). However, cells

harboring designed single-guide RNAs failed to grow as single-

cell colonies, suggesting the essential role of SNORD15A and

SNORD46 in cancer cells.

To help the broader research community visualize and explore

the expression and function of snoRNAs, we constructed an

interactive and user-friendly data portal, SNORic. We expect

that this data portal will facilitate the identification of biomarkers

or therapeutic targets for cancer based on snoRNAs.
Figure 7. Overview of SNORic Data Portal and Example of SNORD46

(A) Four modules in SNORic: summary; snoRNA-based analysis; gene-based an

(B) Examples in snoRNA-based analysis module. The differential expression of

among kidney chromophobe (KICH) tumor stages, among BRCA PAM50 subty

(ACC). SNORD60 is significantly correlated with CNV in KICH. SNORD93 is sign

(C) Examples in gene-based analysis module. Users can input a gene of intere

significantly correlated with SNORA56 in thymoma (THYM), the splicing level of

(TGCT), and protein expression level of FOXO3 is significantly correlated with SN
EXPERIMENTAL PROCEDURES

Data Collection

We downloaded the gene annotations (hg19) of 403 and 1,457 snoRNA genes

from UCSC Genome Browser and GENCODE, respectively, and merged them

as 1,524 unique snoRNA genes. We obtained snoRNA class information from

UCSC Genome Browser, Rfam, and Ensembl. We downloaded 16,591

miRNA-seq binary alignment map (BAM) files across 31 cancer types from

the Cancer Genomics Hub (CGHub) (https://cghub.ucsc.edu; Figure S6). We

downloaded DNAmethylation data, CNV data, mRNA expression, and protein

expression data from TCGA data portal (https://portal.gdc.cancer.gov/). The

annotation of RefSeq genes was downloaded from UCSC Table Browser

(http://genome.ucsc.edu/cgi-bin/hgTables; hg19).

Characterization of the Expression Profiles of snoRNAs

We mapped the reads to snoRNA genes and quantified the expression

of snoRNAs as RPKM. snoRNAs with an average RPKM R 1 across samples

in each cancer type were defined as detectable snoRNAs. snoRNA ex-

pression profiles were deposited in both SNORic (http://bioinfo.life.hust.edu.

cn/SNORic) and Synapse (https://www.synapse.org, syn8370863).

Integrative Analysis of snoRNA Expression

We calculated the Spearman correlation between snoRNA expression and

their host gene expression, their own CNV, and DNA methylation. We also

calculated the Spearman correlation between the snoRNA, mRNA/proteins,

and splicing. We used ConsensusClusterPlus (Wilkerson and Hayes, 2010)

to classify the tumor samples and identify clinically relevant snoRNAs. Detailed

information is provided in the Supplemental Experimental Procedures.

Functional Characterization of snoRNAs

We identified the interacting proteins for the top clinically relevant snoRNAs

through RNA pull-down, followed by MS analysis. We then knocked down

SNORD46 and examined its functional effects through cell proliferation, migra-

tion, and invasion assays. Detailed information is provided in the Supplemental

Experimental Procedures.

Statistical Analysis

We used a paired Student’s t test to assess the statistical difference in the

snoRNA expression level between tumor and normal samples and considered

jfold changej R 2 and FDR < 0.05 to be significant. We used the univariate

Cox test to examine the association between snoRNA expression and 5-year

survival times of the patient and considered FDR < 0.05 to be significant.

The correlations between snoRNA expression and other molecular data

were calculated by Spearman correlation, and coefficient jRsj R 0.3 and

FDR<0.05were considered as significant correlations. ConsensusClusterPlus

(Wilkerson and Hayes, 2010) was used to classify the tumor samples into clus-

ters based on the snoRNA expression level. GO enrichment analysis was per-

formed by GOstats (Falcon and Gentleman, 2007).

Implementation of the SNORic Data Portal

The expression of snoRNAs in each cancer type and related data (mRNA

expression, CNV, DNA methylation, and clinical information) have been orga-

nized into a set of relational MySQL tables. Django (v1.9.7), an open-source

web framework based on the WSGI and Apache (v2.4.18), was used to

construct the SNORic database. Correlation, differential analyses, and survival

analyses were performed in R.
alysis; and download.

SNORD46 in breast invasive carcinoma (BRCA) tumor and normal samples,

pes, and association with patient 5-year survival in adrenocortical carcinoma

ificantly correlated with its DNA methylation in uveal melanoma (UVM).

st to obtain its correlated snoRNAs. The mRNA expression level of CKS2 is

MTA3 is significantly correlated with SNORD46 in testicular germ cell tumors

ORA71D in stomach adenocarcinoma (STAD).
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