Eleni Gavriilaki, MD PhD Hematologist – Postdoctoral Researcher G. Papanicolaou Hospital, Thessaloniki; Greece

Complement

Complement

Immuno-thrombosis and endothelial dysfunction in COVID-19

Gavriilaki E, et al. Curr Hypert Rep 2020

COVID-19 immuno-thrombosis leads to multi-organ damage (...not just lung disease/ARDS)

Gupta A et al., Nature Medicine, 1017–1032(2020)

COVID-19 immuno-thrombosis: mechanisms

Skendros P, et al. JCI 2020

Complement cascade

Gavriilaki E, et al. Blood 2021

Complement activation in COVID-19

Gavriilaki E, et al.. BJH 2020 Gavriilaki E, et al. Annals of Hematology 2020

Direct activation of alternative pathway from SARS-CoV-2 (spike proteins)

Yu J, et al. Blood 2020

Could severe COVID-19 resemble Complementopathies?

Table 2. Disorders in which complement inhibition is beneficial

Disorder	Mechanism of complement activation	Complement pathway implicated	Proof of benefit from complement inhibition
Age-related macular degeneration	Genetic variants of complement-regulatory proteins	Alternative	Phase III clinical trials
ANCA vasculitis	C5a-mediated effects of complement-activating autoantibodies	Alternative/classical	Phase III clinical trial
Antiphospholipid antibody syndrome	Genetic variants of complement-regulatory proteins	Alternative/classical	Case reports/series
Atypical hemolytic uremic syndrome	Genetic variants of complement-regulatory proteins; autoantibodies	Alternative	Approved treatment
Cold agglutinin disease	Complement-activating antibodies	Classical	Phase III clinical trials
Glomerulopathies	Genetic variants of complement-regulatory proteins; autoantibodies	Alternative/classical	Phase II clinical trials
HELLP syndrome	Genetic variants of complement-regulatory proteins	Alternative	Case reports
Myasthenia gravis	Complement-activating antibodies	Classical	Approved treatment
Neuromyelitis optica	Complement-activating antibodies	Alternative/classical	Approved treatment
Paroxysmal nocturnal hemoglobinuria	GPI anchor deficiency	Alternative	Approved treatment
Periodontitis	Local microbially induced complement activation	Alternative	Phase II clinical trial
Transplant-associated TMA	Genetic variants of complement-regulatory proteins	Alternative	Phase III clinical trial

Disorders are listed alphabetically. ANCA, anti-neutrophil cytoplasmic antibody; GPI, glycosylphosphatidylinositol; HELLP, <u>h</u>emolysis, <u>e</u>levated <u>l</u>iver enzymes, and <u>l</u>ow <u>p</u>latelets; TMA, thrombotic microangiopathy.

Atypical hemolytic uremic syndrome: the prototype disease of complementopathies

Atypical hemolytic uremic syndrome: the prototype disease of complementopathies

Clinical Immunology 226 (2021) 108726

Contents lists available at ScienceDirect

Clinical Immunology

journal homepage: www.elsevier.com/locate/yclim

ELSEVIER

Full Length Article

Genetic justification of severe COVID-19 using a rigorous algorithm

Eleni Gavriilaki^{a,*}, Panagiotis G. Asteris^b, Tasoula Touloumenidou^a, Evaggelia-Evdoxia Koravou^a, Maria Koutra^a, Penelope Georgia Papayanni^a, Vassiliki Karali^c, Apostolia Papalexandri^a, Christos Varelas^a, Fani Chatzopoulou^d, Maria Chatzidimitriou^e, Dimitrios Chatzidimitriou^d, Anastasia Veleni^f, Savvas Grigoriadis^g, Evdoxia Rapti^h, Diamantis Chlorosⁱ, Ioannis Kioumis^j, Evaggelos Kaimakamis^k, Milly Bitzani^k, Dimitrios Boumpas^c, Argyris Tsantes^h, Damianos Sotiropoulos^a, Ioanna Sakellari^a, Ioannis G. Kalantzis¹, Stefanos T. Parastatidis^b, Mohammadreza Koopialipoor^m, Liborio Cavaleriⁿ, Danial J. Armaghani^o, Anastasia Papadopoulou^a, Robert Alan Brodsky^p, Styliani Kokoris^h, Achilles Anagnostopoulos^a

Genetic susceptibility in COVID-19

We hypothesized that genetic susceptibility would be :

- evident in patients with severe COVID-19 and
- associated with TMA-associated features

Methods

• Consecutive patients hospitalized with COVID-19

(March-April 2020, first wave in Greece)

- **COVID-19 severity:** World Health Organization's (WHO) criteria
- **DNA extraction** (peripheral blood)
- NGS targeted gene panel

American Society *of* Hematology

NGS targeted gene panel

- Probes were designed using the Design studio (Illumina).
- Amplicons cover exonic regions of TMA-associated genes (Complement factor H/CFH, CFH-related, CFI, CFB, CFD, C3, CD55, C5, MCP, Thombomodulin/THBD, ADAMTS13).
- Libraries were sequenced on a MiniSeq System
- Analysis was performed with TruSeq Amplicon, and variant calling with Somatic Variant Caller in germline mode and variant allele frequency higher than 20%.
- Variants' clinical significance: based on ClinVar and the current version of the Complement Database, as we have previously described.

Patient population 133 COVID-19 patients

- 80 with moderate disease hospitalized in COVID-19 general ward
- 53 with severe disease hospitalized in ICU

Patient characteristics at hospitalization

Characteristics	General Ward patients	Intensive Care Unit patients	p-value
Total lymphocyte count	1.2[0.61]	1.1[0.89]	0.088
Neutrophil-to-lymphocyte ratio	3.1[3.9]	7.5[5.2]	<0.001
Platelets (x 103/mm3)	229±105	326±155	0.015
Alanine aminotransferase (U/L)	26[32]	50[108]	0.061
Asparate aminotransferase (U/L)	21[62]	30[54]	0.367
Direct bilirubin (mg/dl)	0.19[0.05]	0.51[0.42]	0.012
Lactate dehydrogenase (U/L)	294±1a14	417±160	0.001
Creatinine (mg/dl)	0.7[0.6]	0.9[0.7]	0.771
Activated partial thromboplastin time (sec)	34.3±7.6	37.5±5.6	0.201
D-dimer (ng/mL)	875[542]	2115[2312]	0.011
C-reactive protein (mg/dl)	51±37	126±76	<0.001
Procalcitonin (ng/ml)	0.08±0.01	0.17±0.09	0.236
Ferritin (ng/ml)	667±561	1221±908	0.012

Genetic analysis: single variants

- Seven patients, each carrying one pathogenic or likely pathogenic variant in C3, CD46, DGKE, and CFH (Complement Database)
- One patient: **rare germline missense variant** in *CFI* (rs112534524), suffered from critical disease but survived after long-term ICU hospitalization
- Interestingly, **five patients** showed **a likely protective missense variant** in *CFB* (rs641153). These patients did not require ICU.

Genetic analysis:

combination of variants

- Pathogenic variant of ADAMTS13 (rs2301612, missense) in 28 patients
- Two missense risk factor variants, previously detected in complementrelated diseases: rs2230199 in *C3* (13 patients); and rs800292 in *CFH* (26 patients)
- 22 patients: combination of these characterized variants
- This combination was significantly associated with critical disease that required intensive care (p=0.037), as well as low lymphocyte counts (p=0.021) and high neutrophil-to-lymphocyte ratio (p=0.050).
- In the multivariate model, critical disease was an independent predictor of double heterozygocity in these variants.

Algorithms for disease risk prediction: too many variants

- Multi-disciplinary, international collaboration (Iran, Malaysia, Italy, Greece)
- 381 variants in total
- Combinations : more than yotta = 10²⁴
- Boolean algebra (rules of logic) to determine the combination of variants that is associated with severe disease

Algorithms	Variant		Variant frequency based on Sex difference (%)		
	rs	Gene	Position	Female	Male
for dispase	rs1042580	THBD	23027621		21.09
IVI UISEASE	rs2230203	C3	6710782		18.76
	rs2250656	C3	6718534		17.06
rick	not available	THBD	23027807		16.57
IISK	rs2547438	C3	6718078		16.47
	rs2073932	ADAMTS13	136305439		15.02
nrediction.	rs3124768	ADAMTS13	136304497		15.02
	rs739469	ADAMTS13	136298729		15.02
	rs7144	CD46	207967719		14.08
aender	NA	ADAMTS13	136295288		14.03
gonaon	rs35274867	CFH	196712596		13.33
1.00	rs1047286	C3	6713262		12.09
differences	rs11085197	C3	6713175		12.09
	rs800292	CFH	196642233		11.79
	rs551397	CFH	196642072		11.79
	rs2230199	C3	6718387		11.29
	rs1962149	CD46	207956559		11.09
	rs374905	CFHR3	196759037		10.85
	rs2298749	CFI	110681505		10.85
	rs5860990	CFI	110678819		10.85

Further genetic analysis too many variants

Algorithm for disease risk prediction

Functional analysis *THBD, C3a, C5a*

- THBD values were significantly increased in patients requiring ICU hospitalization compared to non-ICU patients (median 2.3, interquartile range [1.6] versus 1.4 [0.79] ng/ml, p=0.025), and patients harboring the rs1042580 (THBD) variant (p=0.032).
- Similarly, C3a values were significantly increased in patients requiring ICU hospitalization compared to non-ICU patients (410 [14.1] versus 312 [19.1] ng/ml, p=0.035). D
- Despite increased levels of C5a in ICU patients, this difference did not reach statistical significance (72.1 [7.2] versus 43.4 [11.3] ng/ml, p=0.244).

Machine learning – artificial intelligence

Machine learning – artificial intelligence

Conclusions

- We reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in three complement genes, age, and gender.
- Importantly, we confirm that **genetic dysregulation** is associated with **impaired complement phenotype**.

Complement : thromboinflammation in COVID-19

Antonio M. Risitano, Dimitrios C. Mastellos, Markus Huber-Lang, Despina Yancopoulou, Cecilia Garlanda, Fabio Ciceri & John D. Lambris. Nature Reviews Immunology, 20, 343–344 (2020)

Complement inhibitors in COVID-19

Gavriilaki E, Brodsky RA. JCI 2020

AMY-101 in 3 COVID-19 ARDS patients

San Rafaelle Hospital, Italy, March 2020

Intervention: 5 mg/Kg AMY-101

- 1 loading dose, 6 h iv infusion
- 13 maintenance doses max, 24 h iv infusions

+

Usual care/best available treatment

(antibiotics given, anti-virals allowed but not given, corticosteroids allowed but not given)

Loading dose of AMY-101 followed by continuous IV infusion (up to 14 days)

AMY-101 in 3 COVID-19 ARDS patients

San Rafaelle Hospital, Italy, March 2020

Reduction of inflammatory markers (withing 48 hours after the start of treatment) correlated with improvement in respiratory function (manifested a few days after the start of treatment).

Mastaglio S et al, *Clin Immunol*, 2020 Risitano AM et al, *Nat Rev Immunol*, 2020 Skendros P et al, *J Clin Invest*, 2020 Mastellos D et al, *Clin Immunol* 2020

Baseline

AMY-101: early efficacy in thrombo-inflammation

NET levels_all patients

Key mechanism of action

C3 activation: a key mechanism that interlocks neutrophil with platelet responses in COVID-19 fueling NET-dependent immunothrombosis

Mastaglio S et al, Clin Immunol, 2020

Risitano AM et al, *Nat Rev Immunol*, 2020 Skendros P et al, *J Clin Invest*, 2020 Mastellos D et al, *Clin Immunol* 2020

AMY-101 attenuates NET release in severe COVID-19 patients compared to a weaker effect of eculizumab (Soliris)

Next step ITHACA: First randomized placebo-controlled Phase 2 study of AMY-101 in severe COVID-19 patients with ARDS (EudraCT No: 2020-004408-32)

ITHACA: phase 2 randomized study in COVID-19 ARDS patients

The challenges of complement inhibitors in COVID-19

Availability Patient selection

"The good physician treats the disease; the great physician treats the patient who has the disease" Sir William Osler

·THE ·

JOHNS HOPKINS

HOSPITAL

Acknowledgements

ASH abstract achievement

award

ASH press release

Best of ASH

G. Papanikolaou Hospital

SARS-CoV-2specific T cells

> Clin Infect Dis. 2021 Apr 27;ciab371. doi: 10.1093/cid/ciab371. Online ahead of print.

Vaccinated and convalescent donor-derived SARS-CoV-2-specific T cells as adoptive immunotherapy for high-risk COVID-19 patients

Penelope-Georgia Papayanni ¹ ², Dimitrios Chasiotis ¹ ², Kiriakos Koukoulias ¹ ², Aphrodite Georgakopoulou ¹ ², Anastasia latrou ³, Eleni Gavriilaki ¹, Chrysavgi Giannaki ⁴, Militsa Bitzani ⁴, Eleni Geka ⁵, Polychronis Tasioudis ⁵, Diamantis Chloros ⁶, Asimina Fylaktou ⁷, Ioannis Kioumis ⁸, Maria Triantafyllidou ¹, Sotiria Dimou-Besikli ¹, Georgios Karavalakis ¹, Afroditi K Boutou ⁶, Eleni Siotou ¹, Achilles Anagnostopoulos ¹, Anastasia Papadopoulou ¹, Evangelia Yannaki ¹ ⁹

Gene and Cell Therapy Center, Hematology – HCT Unit, G. Papanikolaou Hospital, Thessaloniki

Polyclonal SARS-CoV-2specific T cell products with a safe and strong cytotoxic profile against SARS-CoV-2-presenting targets, as well as SARS-CoV-2 variants, can be generated from both COVID-19 convalescent or vaccinated donors to be used as adoptive therapy of high-risk patients

Clin Infect Dis. 2021 Apr 27;ciab371. doi: 10.1093/cid/ciab371. Online ahead of print.

Vaccinated and convalescent donor-derived SARS-CoV-2-specific T cells as adoptive immunotherapy for high-risk COVID-19 patients

Penelope-Georgia Papayanni ^{1 2}, Dimitrios Chasiotis ^{1 2}, Kiriakos Koukoulias ^{1 2}, Aphrodite Georgakopoulou ^{1 2}, Anastasia latrou ³, Eleni Gavriilaki ¹, Chrysavgi Giannaki ⁴, Militsa Bitzani ⁴, Eleni Geka ⁵, Polychronis Tasioudis ⁵, Diamantis Chloros ⁶, Asimina Fylaktou ⁷, Ioannis Kioumis ⁸, Maria Triantafyllidou ¹, Sotiria Dimou-Besikli ¹, Georgios Karavalakis ¹, Afroditi K Boutou ⁶, Eleni Siotou ¹, Achilles Anagnostopoulos ¹, Anastasia Papadopoulou ¹, Evangelia Yannaki ^{1 9} Immune response to vaccination

Vaccination of HCT recipients

- Hematopoietic cell transplant (HCT) recipients with coronavirus disease 2019 (COVID-19): dismal prognosis.
- Notwithstanding the prioritization of HCT recipients to COVID-19 vaccination, limited information is available on whether and to what extent, they mount an immune response to SARS-CoV-2 vaccination as they were generally excluded from vaccination trials.

Author, year, journal	Populati on, (n)	Antibodies	Response	Factors
Redjoul R, 2021, Lancet	Auto, Allo (88)	lgGII Quant Assay	59%	Immunosupp ression, Lymphopeni a
Dhakal B, 2021, Blood	Auto, Allo, CAR-T (130)	EUROIMMUN	60%, 69%, 11%	Steroids
Mamez AC, 2021, BMT	Allo (63)	Elecsys (anti- S)	76%	Time from HCT, ATG

Aims - Methods

- We prospectively studied (April-July 2021) the humoral and cellular immune responses to SARS-CoV-2 vaccination in adult patients who had undergone HCT in our Unit and received two doses of a SARS-CoV-2 vaccine after written informed consent
- Responses: before each vaccination dose and 12-51 days later after the second dose

- Neutralizing antibodies against SARS-CoV-2 (CoV-2-NAbs): FDA approved methodology for diagnostic use (ELISA, cPass[™] SARS-CoV-2 NAbs Detection Kit; GenScript, Piscataway, NJ, USA; cut-off value for a positive result set at ≥30%)
- SARS-CoV-2 spike-specific T cells

 (spike-STs) by interferon-γ Elispot after
 pulsing peripheral blood mononuclear
 cells with spike pepmixes.

Study population (n=65)

Female/male (n)	39/26		
Age (years)	51 (21-71)		
Time from HCT (years)	4 (0.17-31)		
Type of HCT (n)			
Autologous	15		
Allogeneic	50		
Type of allogeneic donor (n)			
Sibling	23		
Unrelated	21		
Haploidentical	6		
Current treatment (n)			
No treatment			
Chemo- and/or immuno-therapy	7		
GVHD prophylaxis	3		
GVHD treatment	14		
HCT: hematopoietic cell transplantation; GVHD: graft-versus-host-disease			

Continuous variables are presented as median (range).

- 63 Pfizer-BioNTech, 2 Astra Zeneca
- No adverse events
- T cellular immunity: 38 / 65
- 17 health-care workers as controls

Significant increase in responses after 2nd vaccination

Humoral response (87%)

T cellular response (80%)

Significant association between humoral and cellular responses

Significant decrease in alloHCT under immunosuppression

T cellular response **Humoral response** *** **** 1,000 -*** p=0.06100-CoV-2-NAbs (%) PBMCs 100 SFC/ 5x10⁵ 50-10-Healthy Auto-HCT Allo-HCT Allo-HCT Allo-HCT Allo-HCT Allo-HCT Healthy Auto-HCT Allo-HCT off treat on treat off treat on treat

American Society *of* Hematology

Unpublished data

Significant decrease in HCT recipients with CD3+<1,000/µl

Humoral response

T cellular response

Conclusions

- Herein, we report for first time humoral and T cell responses post SARSCoV-2 vaccination in HCT recipients.
- Transplant recipients not under active and intense immunosuppression at the time of vaccination may benefit significantly from COVID-19 vaccination even though these responses are blunted compared to healthy individuals.
- However, for the severely immunocompromised patients it seems highly unlikely that they could be protected by vaccination and for this vulnerable population, different vaccination schemes or therapeutic platforms should be developed along with collateral measures including minimal exposure and immunization of caregivers and health care providers.

Complement

Acknowledgements

Results – Issues lab researchers / clinicians are facing – YoungEHA questionnaire

Effect of the COVID-19 pandemic on laboratory and clinical research:

a testimony and a call to action from researchers

Kabanova A, et al. Hemasphere 2020

Effect of the COVID-19 pandemic on laboratory and clinical research:

a testimony and a call to action from researchers

Productivity in clinical vs laboratory researchers

Productivity according to role

Effect of the COVID-19 pandemic on laboratory and clinical research:

a testimony and a call to action from researchers

Kabanova A, et al. Hemasphere 2020

Strategies

"Working in the lab in security conditions with reduced number of personnel."

", building experimental plans for future work"

"All our PhD students are now working on a review. Thus they are using this time to greatly improve their background and still having an output from this period."

"online classes, e. g. R-coding"

"lab meeting with external experts to discuss topics related to the scientific carreers"

"... creating an European Health Research Council."

"...team yoga lessons online,..."

"Science & Beers club to chat about papers while drink a beer together

"...catch up for something fun like online codenames."

Long-term issues lab researchers / clinicians are facing – YoungEHA followup questionnaire

"Long COVID-19" of researchers: what to do next

"Long COVID-19" of researchers: what to do next

С

How satisfied are you with the response and support during the pandemic?

Gavriilaki E, et al. Submitted to Hemasphere 2021

YoungEHA Research Meeting

Would you like to expand your knowledge on basic and translational research in hematology?