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Visualization of chemical modifications 
in the human 80S ribosome structure
S. Kundhavai Natchiar1,2,3,4,5*, Alexander G. myasnikov1,2,3,4,5*, Hanna Kratzat1,2,3,4,5†, isabelle Hazemann1,2,3,4,5 & 
bruno P. Klaholz1,2,3,4,5

Human ribosomes are complex cellular machines that catalyse pro-
tein biosynthesis and contain 80 ribosomal proteins and four rRNA 
chains (28S, 5S and 5.8S rRNAs in the 60S subunit, and 18S rRNA in 
the 40S subunit)1. Human rRNAs carry numerous post-transcriptional 
modifications, such as methylations on ribose moieties and at different 
positions on the heterocyclic bases of A, G, C and U nucleotides that 
are introduced enzymatically during ribosome biogenesis, but the role 
of these modifications is essentially unknown. Many chemical modi-
fications of human rRNAs have been reported. Around 95% of these 
modifications are 2′-OH ribose methylations (2′-O-Me) and conver-
sions of U to pseudouridine (Ψ), whereas around 5% of modifications 
are predicted (i.e. found in databases) to contain methylated bases 
and other modifications2–8. Bacterial rRNAs contain a much smaller 
number of chemical modifications. Epigenetic rRNA modifications are 
thought to play an important role in catalytic activity as well as in RNA 
folding and stability9–12, and they appear to modulate the activity of  
antibiotics13,14, suggesting that they may influence the mode of inter-
action with drugs or lead to antibiotic resistance15,16. Some rRNA modi-
fications are associated with dysregulated protein synthesis, including 
in cancer, inherited human disorders and other diseases17–22, but the 
molecular basis of these phenomena remains unknown.

We have previously determined the structure of the human 80S ribo-
some at an average resolution of 3.6 Å, which has provided insights 
into the positions of amino-acid side chains and nucleotide bases23 
and made it possible to study a ligand complex of the human ribosome 
with an antibiotic24. However, at this resolution, it was not possible 
to address atomic details such as precise side chain conformations or 
small chemical modifications of the rRNA nucleotides, which were 
instead modelled as regular RNA nucleotides. Recently, rRNA modifi-
cations have been observed in the structures of bacterial and eukaryotic 
para site ribosomes25–27, but they have never been visualized in human 
ribosomes. Mapping predicted sites on the human ribosome struc-
ture would provide only incomplete information regarding both the 
presence of a site and its three-dimensional (3D) environment in the 

structure. Directly localizing and visualizing chemical modifications in 
the human ribosome structure would constitute a major advance, and 
could contribute to the development of new drugs. Therefore, we set 
out to determine the structure of the human ribosome to the highest 
possible resolution and to address the 3D localization and structural 
implications of rRNA modification sites. To investigate the potential 
role of rRNA modifications in drug specificity, we also determined the 
structure of the human ribosome in a complex with three inhibitors.

Features of the structure of the human ribosome
The structure of the human 80S ribosome was determined by single 
particle cryo-electron microscopy (cryo-EM) and refined using focused 
refinement28 of the 60S ribosomal subunit and the 40S head and body 
parts during image processing (resolved to 2.9, 3.0 and 3.1 Å average  
resolution, respectively; see Methods; Fig. 1a, Extended Data Figs 1 and 2,  
and Extended Data Table 1a). Although only a few flexible peripheral 
regions are limited to a resolution of more than 3.5 Å, many regions 
have a local resolution of approximately 2.5 Å (Extended Data Fig. 2)  
consistent with the features resolved in the cryo-EM map (Fig. 1b, 
Extended Data Fig. 3). The present structure provides an unprecedented 
level of detail, even in the less ordered parts of the complex, including 
the 40S subunit (see Methods; Extended Data Fig. 3). Notably, the iden-
tities of nucleotide bases (and thus the RNA sequence in these regions) 
can now be determined unambiguously from the cryo-EM map, allow-
ing stretches of incorrectly annotated nucleotide sequences in previous 
porcine and human ribosome structures23,29 to be corrected (including 
rRNA sequence register shifts; see Methods; Fig. 1c, Extended Data 
Fig. 4) or reclassified from rRNA to protein (Fig. 1d, Extended Data 
Fig. 5a–c). Moreover, the structure reveals features that are usually 
not amenable to cryo-EM, such as alternative conformations of side 
chains and some amino acid modifications (see Methods; Fig. 1b,  
Extended Data Fig. 5d). Notably, this cryo-EM structure resolves many 
fine details of chemical modifications in the rRNA (see Methods for 
their identification; Extended Data Figs 5–10) as described below.

Chemical modifications of human ribosomal RNA (rRNA) are introduced during biogenesis and have been implicated in 
the dysregulation of protein synthesis, as is found in cancer and other diseases. However, their role in this phenomenon 
is unknown. Here we visualize more than 130 individual rRNA modifications in the three-dimensional structure of the 
human ribosome, explaining their structural and functional roles. In addition to a small number of universally conserved 
sites, we identify many eukaryote- or human-specific modifications and unique sites that form an extended shell in 
comparison to bacterial ribosomes, and which stabilize the RNA. Several of the modifications are associated with the 
binding sites of three ribosome-targeting antibiotics, or are associated with degenerate states in cancer, such as keto 
alkylations on nucleotide bases reminiscent of specialized ribosomes. This high-resolution structure of the human 80S 
ribosome paves the way towards understanding the role of epigenetic rRNA modifications in human diseases and suggests 
new possibilities for designing selective inhibitors and therapeutic drugs.
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Localization and classification of rRNA modifications
Almost all the rRNA modifications are located in the 18S and 28S 
rRNAs, whereas none were seen in the 5S rRNA (where none were 
predicted). Two of the four modifications predicted to be present in the 
5.8S rRNA were not seen (Gm75 was absent, but sub-stoichiometric 
methylation of Um14 cannot be ruled out; Extended Data Fig. 5e–h), 
and the other two predicted modifications (Ψ55 and Ψ69) were U iso-
mers, which cannot be confirmed in the structure unless they form a 
specific hydrogen bond with the N1 position. Most of the modifica-
tions that we found are clustered around the inward-facing parts of the 
structure (Figs 2a and 3a). There are chemical modifications on many 
2′-OH groups on ribose moieties and in precise but variable positions 
around the purine and pyrimidine rings of certain nucleotides (Figs 2  
and 3; Extended Data Figs 7, 8 and 10). Some modifications were 
found in the predicted nucleotide positions3,4,30, but many additional 
modifications were found on unpredicted sites. In total, we identified 
136 rRNA modification sites in the entire structure, including 60 2′-O 
methylations (50 of which were among the 103 predicted sites and ten 
in unpredicted sites), 25 Ψ sites (out of 96 predicted Ψ sites; Ψs at the 
71 remaining predicted Ψ sites cannot be confirmed structurally owing 
to the isomeric nature of this modification—Ψs are recognizable by 
their distinct hydrogen-bond pattern; Figs 2d and 3f) and 51 other 
base modifications (nine of which are at predicted sites and 42 are 
unpredicted). On the basis of this analysis we classified the modifica-
tion sites as universally conserved locations (class I, 11 sites), human or  
eukaryote-specific modifications (class II, 73 sites), and new non- 
predicted unique sites (class III, 52 sites) (Extended Data Table 1b), some  
of which we discuss below to highlight their structural roles (Figs 2  
and 3; a detailed list is provided in Extended Data Figs 6–10).

Class I rRNA modifications
The universally conserved rRNA modification sites (class I) cluster 
in functional centres such as the peptidyl transferase centre (PTC), 
the decoding centre, the mRNA and tRNA binding sites, the peptide 
exit tunnel (PET) and the ribosomal subunit interface. The recently 
reported Escherichia coli and Thermus thermophilus ribosome struc-
tures25,26 contain 35 and 33 rRNA modification sites, respectively. We 
found modifications in only 11 of the equivalent nucleotide positions 
in the human ribosome (Supplementary Table 1). The types of chemical 

modification are conserved at these eleven sites (with the exception of 
G4550, see Methods). For example, the modifications m6

2A1850 and 
m6

2A1851 (18S rRNA) in the decoding centre of the 40S ribosomal 
subunit (Fig. 3d) are evolutionarily conserved dimethylations that are 
required for ribosome assembly31. The tip of H69 in the 60S ribosomal 
subunit is decorated with two universally conserved Ψs, m3Ψ3762 and 
Ψ3764, the former being involved in bridge B2a.

Class II rRNA modifications
Class II comprises 73 human-specific modifications, predominantly 
2′-O methylations and pseudouridylations that are also located at func-
tional sites of the ribosome (Supplementary Table 2). For example, the 
bulge loop in H37 located next to the aminoacyl (A)-site finger con-
tains two Ψs (Ψ1677 and Ψ1683), which are important for maintain-
ing the translation reading frame32. There are four eukaryote-specific 
Ψs (Ψ4403, Ψ4442, Ψ4457 and Ψ4500; Fig. 2d) at the PTC; Ψ4500 is 
located on helix H92, which during translation would be close to the 
CCA end of an A-site tRNA, and m3C4530 and Ψ4531 mark the pep-
tidyl (P) tRNA binding site and could influence peptide formation.  
A 2′-O-Me triplet that is conserved in eukaryotes, comprising Am2363, 
Gm2364 and Cm2365, is lined up in the nearby H26–H47 junction, 
which interacts with and stabilizes the helix H73 bulge loop at the PET 
(Fig. 2e). Aromatic π-interactions with methylated sites, such as the 
one between the methyl groups in m5C3782 (Fig. 2g) and Cm4536, 
introduce π-interactions with C3781 and Am3785 (which is involved 
in a kink turn), respectively, that jointly stabilize the H69–H71 loop. 
Finally, at the decoding centre, there are three modified nucleotides 
next to the substrate binding sites: Cm1703 in the mRNA channel, 
Ψ1243 above the A site and the predicted m1acp3Ψ1248 in the P site 
(Fig. 3e). Aminocarboxypropyl (acp) is one of the most chemically  
complex modifications in eukaryotic rRNA; the absence of hyper- 
modification of m1acp3Ψ1248 strongly delays the maturation of  
18S rRNA, and blocking all three modifications at the decoding centre  
simultaneously results in defective amino acid incorporation and 
neomycin resistance33,34. These examples show that the numerous 
human-specific modifications work together to preserve the topology 
of the functional sites. As several of these human-specific modifications 
are also found in yeast (Supplementary Table 2), this concept is likely 
to apply to eukaryotes in general.
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Figure 1 | High-resolution structure of the human 80S ribosome. a, 
Focused refinement of the human 80S structure refined first globally, 
then separately for the 40S and 60S ribosomal subunits and finally for the 
individual 40S body, 40S head and 60S regions (see also Extended Data 
Figs 1 and 2 and Extended Data Table 1a). b, A representative region 
illustrating the quality of the map and the high-resolution structural 
features; see also Extended Data Fig. 3. The map visualizes protein 
methylations and several dual conformations (lower panels; see also 

Extended Data Fig. 5 and Methods). Numbers in the corners indicate the 
local root mean square deviation contour level of the cryo-EM map (see 
Methods). c, An example of RNA register shift correction (left, cryo-EM 
map and partially refined previous atomic model; right, final atomic 
model; see also Extended Data Fig. 4). d, Reassignment of an RNA-
annotated region into the C-terminal region of large ribosomal subunit 
protein eL29; see also Extended Data Fig. 5.
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Class III rRNA modifications
The class III sites comprise 52 unpredicted unique sites, including ten 
2′-O-methylated nucleotides and 42 base-modified nucleotides in 
the 18S and 28S rRNAs (Supplementary Table 3). The base modifi-
cations include several unexpected chemical modification types that 
have not been reported previously. For example, G3897, Gm3899 and 
G4690 appear to be acetylated in the N7 position (Fig. 2f and Extended 
Data Figs 7 and 8) and form a network of modified nucleotides in 
the PTC and PET that stabilizes helices H72 and H73, suggesting  
possible involvement in translation. Similarly, the strong additional 
densities at the N7 positions in G1909, G1797, G3880 and G4371 are 
likely to correspond to hydrophilic moieties such as acetyl, acp or larger 
unidentified groups (annotated as ‘xp’; Supplementary Table 3, Fig. 2c, f  
and Extended Data Figs 7, 8 and 10), but the precise chemical nature 
of these substituents remains to be identified. In 18S rRNA, we found 
two cytosine acetylations that are not found in databases but are uni-
versally conserved5,35,36 (ac4C1337 and ac4C1842; Fig. 3b and Extended 
Data Fig. 10). ac4C1842, whose acetylation is crucial for 40S subunit 
biogenesis35, contributes to the inter-subunit bridge eB14. A series of 
nucleotides that are modified at the oxygen position (such as O6 in G 
and O4 in U) are of particular note, as this is an unusual modification 
in RNA (see Methods; Fig. 2c and Extended Data Fig. 8).

rRNA modifications in inhibitor binding pockets
Because rRNA modifications appear to influence the activity and speci-
ficity of antibiotics13–16, we determined the structure of the human 
ribosome with three simultaneously bound inhibitors, including two 

eukaryote-specific antibiotics (see Methods). Inspection of the ligand 
pockets shows that the inhibitors are either in direct contact with or in 
very close proximity to rRNA modification sites (Fig. 4). Indeed, the 
2′-O-Me group of Cm3909 (a human-specific modification) provides 
hydrophobic contacts to homoharringtonine (HHT) at the PTC, com-
plemented by the nearby Ψ4530 and Ψ4531 (eukaryote and human- 
specific modifications, respectively; Fig. 4a). Bound hygromycin 
B (HYG) is not in direct contact with any rRNA modifications, but 
is in proximity to Cm1703 (human-specific), m3U1830, m6A1832, 
m6

2A1850 and m6
2A1851 (18S rRNA; Fig. 4b). The binding site of 

cycloheximide (CHX) is also interesting as CHX competes with the 
CCA end of the E-site tRNA. The extra methyl group of m2xp7G4371 
generates a hydrophobic contact with CHX, which is also within drug-
able distance of the 2′-O-methyl group of Gm4370 (Fig. 4c, d). In the 
non-inhibited state, the CCA end of the E-site tRNA interacts with the 
modified moieties of Gm4370 and m2xp7G4371 (Fig. 4c). Several other 
known inhibitor binding pockets also contain modified nucleotides 
(see Methods). Together, these observations suggest that rRNA modi-
fications have a role in the molecular recognition of inhibitors and of 
tRNAs in the A, P and E sites.

Structural and functional role of rRNA modifications
This study provides, to our knowledge, the highest resolution structure 
and the most complete atomic model of the human ribosome to date, 
including the visualization of more than 130 chemical modifications of 
human rRNA introduced during biogenesis, many of which were not 
predicted from databases based on biochemical studies. Far beyond a 
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Figure 2 | Chemical modifications of the rRNA in the human 60S 
ribosomal subunit. a, Annotation of modified nucleotides on the human 
28S rRNA; underlined nucleotides are those shown in b–g; see also 
Extended Data Figs 6–8. b, Examples of 2′-O-ribose methylations (cyan 
arrows throughout all figures; other modifications are indicated with 
magenta arrows). c, Examples of O6 and O4 methylations. d, Example of 
a pseudouridine (Ψ) with the characteristic hydrogen bonding in the N1 

position. e, Example of a conserved 2′-O-ribose methylated nucleotide 
triplet and its van der Waals contacts (black arcs). f, A typical nucleotide, 
showing an unpredicted chemical modification that provides additional 
opportunities for RNA interactions. g, Examples of chemical modifications 
involving π-interactions with aromatic nucleotide bases (left) or amino-
acid side chains (right).
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simple threading and mapping of predicted sites on an atomic model, 
the experimental visualization of these rRNA modifications allows 
us to investigate their individual 3D environments inside the human 
ribosome, and thereby provides unprecedented insights into their 
role. Two clear conclusions can be drawn from the present analysis. 
First, rRNA modifications have both local and collective roles in the  
stabilization of rRNA structure and in specific interactions that cannot 
be provided by regular nucleotides; and second, all inhibitor binding 
sites contain rRNA modifications in the first and/or second residue 
layers, which have not been accounted for in drug design. Notably, 

most modifications face other rRNA elements (complemented in part 
by ribosomal proteins) and only a few are located at the ribosome sur-
face. The presence of rRNA modifications in the mature 80S ribosome 
has two possible explanations: (i) they are required for biogenesis of 
ribosome assembly and are simply left behind, or (ii) they have specific 
functions in the mature human ribosome, and some may be intro-
duced specifically to acquire new specialized functions; we consider the  
second explanation to be more likely. Notably, essentially all chemical 
modifications of the human ribosome are located in bulges, interior 
and hairpin loops, and near the termini of RNA helices (Supplementary 
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pair of N6 adenine dimethylations in the decoding centre. e, A conserved 
hyper-modified site in the PTC involving a water molecule-mediated 
interaction. Right, full visualization of the two modifications at a lower 
map contour level. f, Example of Ψs with characteristic hydrogen bonding 
in the N1 position.
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Tables 1–3) involving special RNA structural elements including base 
triples, A-minor motifs, kink turns and flipped-out nucleotides. These 
regions tend to be more structurally flexible and benefit from stabiliza-
tion through increased hydrogen-bonding possibilities (as in Figs 2d, f,  
3b, e, f and Extended Data Figs 7, 8 and 10), additional π-stacking  
interactions with nucleotide bases or aromatic amino acid side chains 
(Fig. 2g), or van der Waals contacts between hydrophobic residues in 
the case of methylations and other alkylations (Figs 2b, c, e, 3b–d and 
Extended Data Figs 7, 8 and 10). A characteristic feature of the modi-
fications is that they either stabilize unconventional base pairing, or 
perturb conventional base pairs (such as at the end of helices H86, 
H38 and h44), and thus induce base tilting (for example, xp7G3880; 
Fig. 5a–c and Extended Data Fig. 8). Some modifications appear to 
favour wobble base pairing, like that seen in DNA37,38, or base triple 
interactions, which can propagate to neighbour base pairs (Fig. 5a–c; 
see Methods). As a result, the concept of RNA stabilisation by 2′-O 
methylations12,39 also applies to nucleotide base modifications, such as 
acetyl groups that create special nucleotide geometries and additional 
hydrogen bonding (for example, ac4C1842; Fig. 3b; see Methods).

An extended shell of rRNA modifications in eukaryotes
The rRNA modifications examined here show that the majority 
of modifications occur in or close to functionally important sites. 
Though this was previously known to be true for bacterial ribosomes, 
which carry only a small number of modifications, the present work 
shows that this also applies to eukaryotic, and in particular, human 
ribosomes (Fig. 5d and Extended Data Fig. 11). However, the com-
plexity of modifications increases from prokaryotic to eukaryotic spe-
cies, suggesting that humans (Fig. 5d), and other eukaryotes such as 
yeast (Supplementary Table 2), have evolved an extended additional 
shell of rRNA modifications around the functional centres. This addi-
tional complexity parallels the evolutionary shift towards eukaryotic 
ribosomal RNAs and proteins40, and suggests that epigenetic rRNA 
modifications may have a role in fine-tuning the regulation of protein 
synthesis in eukaryotes, possibly by acting collectively as a ‘cushion’ 
around the functionally important regions. This regulation could be 
further modulated by specific rRNA modifications that differ between 
healthy and dysregulated states. This is illustrated by the presence of 12 
unpredicted sites that contain modifications of guanosine and uridine 
in their O6 and O4 keto groups, respectively, which are otherwise rarely 

seen in RNA (Fig. 2c and Extended Data Fig. 8; Supplementary Table 3)  
and never seen in bacteria25,26. These modifications are reminiscent 
of DNA alkylations that occur in the context of cancer and correlate 
with translation defects41 and increased mutagenicity42,43. While these 
modifications were unexpected, their presence in the HeLa cells used 
in our study may indicate that ribosomes are modified differently in 
different cell types.

Outlook
In summary, this work visualizes chemical modifications of rRNA in 
the human ribosome that are introduced during biogenesis and matura-
tion and highlights their structural and functional roles within their 3D 
molecular environment (see also Supplementary Video). The atomic 
model of the human ribosome that we describe provides an extensive 
repertoire of rRNA modifications, including many new rRNA modifi-
cation sites that might enable the design of new functional assays. Our 
structural analysis of rRNA with three simultaneously bound inhibi-
tors suggests the presence of specific modification sites that could be 
targeted for selective ligand interactions. This concept could provide 
a basis for disease-specific drug developments that exploit the altered 
reactivity and interactions of specifically modified rRNA residues, 
notably in the context of human-specific inhibitors against protein 
synthesis dysregulations, such as those seen in cancer19,24,44, genetic 
diseases or diseases related to ribosome biogenesis45. This study under-
lines the importance of considering rRNA modifications for future  
structure-based drug design, both in humans and in bacteria, which 
could also benefit from synergistic effects between simultaneously 
bound inhibitors.

Finally, the presence of many unpredicted rRNA modification 
sites and the absence of some of the expected 2′-O-Me sites suggest 
that chemical rRNA modifications in human ribosomes may differ 
between cell types, such as between normal cells and cancer cells (such 
as the HeLa cells used here). For instance, some of the class III rRNA 
modifications could be a signature of cancerous states. This suggests 
that it might be possible to distinguish between differently specialized 
ribosomes. Consistent with recent evidence that modifications could 
be sub-stoichiometric (see also Extended Data Fig. 5e) and ribosome- 
specific22,46–50, this extends the concept of ribosome heterogeneity to 
the level of rRNA modifications at specific sites with potential impli-
cations for human health.
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Figure 5 | Role of chemical modifications and their evolutionary 
extension between prokaryotic and eukaryotic species. a–c, Role in the 
stabilization of the rRNA structure. d, Comparison of modification sites 

in bacterial ribosomes (left) with those in the human ribosome (middle) 
reveals an evolutionarily extended additional shell of rRNA modifications 
(see also Extended Data Fig. 11).
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1060–1080, 1250–1294 and 3761–3773 at the periphery of the 60S subunit, which 
were rebuilt and refined (Extended Data Fig. 4). Typical rRNA sequence register 
shifts of −1 and +1 in the 28S rRNA at the periphery of the 60S subunit were 
rebuilt and refined (for example, helix H25 and helices A and B of expansion 
segment 7L (ES7L); Fig. 1c and Extended Data Fig. 4; interestingly, these three 
regions are particularly G/C rich). Other rebuilt or reassigned sections comprise 
28S rRNA regions 1697–1709, 1833–1841 (+1 shift), 2077–2106, 2763–2768  
(+1 shift), 4730–4776 (+1 shift), 4859–4895 (−1 shift) and 4925–4959, and 18S 
rRNA regions 311–339, 873–876 (+1 shift) and 1407–1438. Several of these cor-
rections clarify the characteristic interaction pattern of flipped-out nucleotides 
(Extended Data Fig. 4). Moreover, a region interpreted as 28S rRNA (2114–2123) in 
previous human and porcine ribosome structures in fact corresponds to the 91–116 
region of the large ribosomal subunit protein eL29, which could now be traced 
unambiguously, including side chains. eL29 forms two α-helices that bridge the 
rRNA region 1214 with regions 1240 and 1270 (28S rRNA regions ES7L-E, ES7L-H 
and helix H30, respectively, Fig. 1d; Extended Data Fig. 5a–c). In addition, this 
eL29 stretch packs against the long N-terminal helix of the uL30 protein through a 
series of hydrophobic contacts (Fig. 1d). These regions are involved in the architec-
ture of the 60S subunit, notably in stabilizing the peripheral rRNA segment ES7L.

Chemical modifications were identified on the basis of the presence of signi-
ficant additional densities in the 2′-OH position (indicated by cyan arrows in the 
figures) and on nucleotide bases. As the resolution is not constant throughout 
the map, all modifications were examined individually, taking into account local 
resolution features of the neighbouring residues (see representative examples in 
Extended Data Fig. 5i, j, in which the presence and absence of modifications are 
compared). The map contour level was adjusted individually, including for the 
regions comprising the inhibitors, which are not fully stoichiometrically bound. 
For the contour level of the cryo-EM map, numbers in the figure corners indicate 
the local root mean square deviation from the mean (similar to sigma levels). 
Annotated residues were cross-checked for predictive presence or absence in data-
bases32 such as the RNA Modification Database (mods.rna.albany.edu3,30) and the 
modification patterns listed in MODOMICS4. New chemical groups were anno-
tated on the basis of size, shape and hydrogen-bonding potential with neighbour 
residues. For example, G3897, Gm3899 and G4690 appear to be acetylated at the 
N7 position, on the basis of the additional density being in plane with the nucle-
otide base and the hydrogen-bond patterns with neighbouring phosphate groups  
(Fig. 2f and Extended Data Fig. 8). Annotations of the chemical nature of modifi-
cations are reliable throughout (methyl (m), acetyl (ac), and so on), with the excep-
tion of larger moieties such as propyl and other similar alkyl groups (for example, 
new ‘xp’ sites), which cannot be distinguished and remain to be characterized with 
respect to their chemical nature. Chemical modifications of amino acids include 
methylations of Lys333 (protein uL4) and Lys98 (eL40; Extended Data Fig. 5d). 
The fact that the RNA helicase II/Guα interacts with the 264–333 region of uL4 
during 28S rRNA maturation67 suggests that this unpredicted Lys333 modification 
is involved in ribosome biogenesis.

The final atomic model following refinement against the cryo-EM map has 
excellent geometric parameters and comprises ~219,591 atoms (excluding  
hydrogens) across the 5,863 nucleotide residues and ~11,729 amino acids of the 
80 proteins and the 4 rRNAs (28S, 5S, 5.8S and 18S; excluding certain expansion  
segments (ES) of rRNA, which are only partially visible at the periphery of the 
structure, probably owing to conformational heterogeneity). Furthermore, the 
atomic model includes 400 positions with Mg2+ ions in typical coordination envi-
ronments, eight Zn2+ ions, 60 water molecules and two ligands (HYG and HTT). 
CHX is in a different atomic model that had a different ribosome conformation in 
the 3D classification, as the 80S–CHX complex was refined separately at a lower 
resolution and rRNA modifications are not resolved. The map contour level was 
adjusted to account for sub-stoichiometric ligand occupancy (Fig. 4). The atomic 
model contains 136 nucleotides and two amino acids with chemical modifications. 
Double conformations of side chains are seen on Arg70 of protein uL30 (providing  
alternative hydrogen bonds; Fig. 1b), Lys341 (protein uL3), Arg85 (protein eS26), 
Arg200 (protein uS5) and Arg138 (protein uS4). Protein residues show well- 
refined geometrical parameters (allowed regions 9.36%, preferred regions 90.38%, 
in Ramachandran plots and 0.26% outliers; Extended Data Table 1a). Figures were 
prepared using the Chimera62 and PyMOL software (DeLano, 2006).
Analysis of molecular interactions involving rRNA modifications. The observed 
rRNA modification sites were classified into universally conserved locations (class I),  
human/eukaryote-specific modifications (class II) and new unpredicted unique 
sites (class III) (Extended Data Table 1b). Class I and II modifications also included 
some semi-conserved sites, such as m7G4550 (28S rRNA), which is conserved as 
a modification site but altered differently because of a sequence change in this 
region (Ψ2605 in E. coli). The same holds for a set of Ψs: m3Ψ1860, m1Ψ3762 
and m3Ψ4296 (28S rRNA; Extended Data Fig. 7), which are methylated in the N3 

MethOdS
Complex formation and cryo-EM data processing. Human 80S ribosomes were 
prepared from HeLa cells as described previously51. HeLa cells were tested by PCR 
and certified to be free of mycoplasma. Freshly prepared human 80S ribosomes 
(2.5 μl) were incubated for 2 h on ice with 10-fold molar excess of HHT, HYG 
and CHX (4-[(2R)-2-[(1S,3S,5S)-3,5-dimethyl-2-oxocyclohexyl]-2-hydroxyethyl]
piperidine-2,6-dione). These ligands were selected because they bind to three dif-
ferent ribosomal sites, as observed in bacterial and yeast ribosomes26,52–55. HYG 
binds the decoding centre in the 40S subunit, HHT binds in the PTC and CHX 
binds in the tRNA E-site of the 60S subunit. Samples were diluted from 2 mg ml−1  
to 0.5 mg ml−1  , applied to 300-mesh holey carbon Quantifoil 2/2 grids (Quantifoil 
Micro Tools) and flash-frozen as described23. To reduce preferential orientation 
effects and improve angular sampling, we used holey carbon grids both with 
and without a thin carbon layer. Data were collected on the in-house spherical  
aberration (Cs)-corrected Titan Krios S-FEG instrument (FEI) operating at an 
acceleration voltage of 300 kV and a nominal underfocus of Δz = −0.4 to −2.5 μm 
at a magnification of 77,778 (nominal pixel size of 0.9 Å). We recorded 6,528  
movies using a back-thinned direct electron detector (Falcon II) 4,096 × 4,096 
camera with dose fractionation (seven individual frames were collected, starting  
from the second one). Total exposure time was 1 s, with a dose of 60 e− Å−2  
(or 3.5 e− Å−2 per frame). Images in the stack were aligned using the whole-im-
age motion correction method using MotionCor256. We used Gautomatch  
(http://www.mrc-lmb.cam.ac.uk/kzhang/Gautomatch/), to pick 398,104 particle 
boxes automatically, and the contrast transfer function of each image was deter-
mined using GCTF as a standalone program on the micrograph and particle levels57.  
For the first steps of image processing we used coarsened data binned by a factor 
of 4 (C4 images). First, we applied 2D classification to remove images with ice 
or other contaminants (253,374 particles left), followed by 3D classification to 
remove bad particles (181,546 good particles left). After 3D refinement, we per-
formed an additional 3D classification (see workflow in Extended Data Fig. 1) to 
separate 80S ribosomes in rotated (43,312) and non-rotated (138,234 particles) 
states. Both complexes contain E-site tRNA and the rotated 80S particles contain 
the protein eEF2, whereas the non-rotated particles contain no factors and were 
refined further as a class of CHX-containing 80S particles (similarly to a procedure 
described previously24). To obtain the best possible resolution of the 80S ribosome, 
all particles of the non-rotated ribosome were used (138,234 particles), and a 3D 
refinement was performed using data with the original pixel size and a box size of 
640 pixels. A further improved cryo-EM map was obtained by focused refinement28 
using individual masks, first around the 40S and 60S ribosomal subunits, and then 
on the individual 40S head, 40S body and 60S subunit regions (see also Extended 
Data Fig. 2), which allowed us to obtain a high-resolution map, including for the 
less well-ordered parts, such as the 40S ribosomal subunit (Extended Data Fig. 3).  
The binary masks were created with the ‘relion_mask_create’ tool using at least 
three pixels extension and seven pixels for smoothening of the edges. The post- 
processing procedure implemented in RELION 1.458 was applied to the final 
maps for appropriate masking, B-factor sharpening (−66.5, −70.6, −82.4 Å2 for 
the 60S, 40S body and 40S head regions, respectively) and resolution estimation 
to avoid over-fitting59. Precise magnification calibration was done by fine-scaling 
of the cryo-EM map with respect to the previous atomic model23,24. The proce-
dure consists of cross-correlation calculations between the cryo-EM map and a 
map calculated from the atomic model for varying scales by increments of 0.01 
of the pixel size (in Chimera software), here in the range of 1.65–1.80 on the 2×  
coarsened data (nominal pixel size of 1.8 Å), with 1.70 Å being the optimal value; 
for the non-coarsened data this corresponds to a pixel size of 0.85 Å on the speci-
men level and a calibrated magnification of 82,353× (1.05882× the nominal 
magnification). The resolution was estimated in Relion at 0.143 FSC criterion60, 
indicating an average resolution of 2.9, 3.0 and 3.1 Å for the 60S subunit, 40S body 
and 40S head, respectively (Extended Data Fig. 2). Local resolution estimation with 
the software ResMap61 shows that many regions reach 2.5 Å resolution (Extended 
Data Fig. 2).
Atomic model building and refinement, and localization of rRNA modifi-
cations. The cryo-EM maps were interpreted using Chimera62 and COOT63 
to derive an atomic model of the human ribosome obtained by model build-
ing and structure refinement64 using Phenix65. Modified nucleotides and 
amino acids templates were drawn and the restraints for the atomic model fit-
ting and refinements were generated using JLigand66. The atomic model of 
the human ribosome (PDB: 4UG0 and 5LKS)23,24 was used as starting point 
and refined against the experimental cryo-EM map by iterative manual model 
building and restrained parameter-refinement protocols (real-space refine-
ment, positional refinement, grouped B-factor refinement and simulated 
annealing as described23,24). This involved numerous register shift corrections 
(mostly +1 or −1) in the 28S rRNA regions 452–519, 655–759, 940–1000,  
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position, and are not normal Ψs as databases would predict. m1Ψ3762 (next to 
Ψ3764 at the tip of H69) is involved in bridge B2a through van der Waals contacts 
with Cm1710 in helix h44. The modified ac4C1842 mentioned in the text contri-
butes to inter-subunit bridge eB14 through an interaction with Arg2 in eL41 (eL41 
connects the PTC and DC in 60S through modified nucleotides at its N and C 
termini; Fig. 3b). The structure shows that ac4C1842 must be modified to interact 
with Arg2 at the subunit interface. The modifications may favour wobble base 
pairing in the rRNA, as occurs in DNA37,38. An example of this is a base triple in 
the vicinity of the modified ac7Gm3899 and ac7G3897 nucleotides: an acetyl moiety  
in the N7 position of ac7G3897 extends the planarity of the base to create van der 
Waals contacts with the phosphate group of C3898 and the nucleotide base of 
A4559 (Fig. 5a). This stabilizes the neighbour non-classical C–A base interaction 
between C3896 and A4564 that shows a strong tilt angle (~45°), which propagates 
to the neighbour Watson–Crick base pair C4565–G3895 (Fig. 5b). Similarly, the 
modified m6G4185 stabilizes the G–U pair (G4184 and U3927) and also stabilizes 
the rRNA loop, which harbours a flipped-out nucleotide (G4183; Fig. 5c). The 
methylation of m5C3782 (Fig. 2g) is required for subunit stability68,69 and intro-
duces functional diversity in ribosomes, where m5 methylation in C2278 in yeast 
leads to the recruitment of a specific subset of oxidative stress-responsive mRNAs  
into polyribosomes70. Some sites include inter-modification interactions, for 
example the modified A-minor contact Am1678/m3C1219 (Fig. 3c) or the 2′-O-
Me triplet in the H26/H47 multi-branch loop junction next to the PET, which 
increases the local packing between the RNA backbone and nucleotide bases  
(Fig. 2e). Finally, some chemical modifications disrupt the base planarity at the 
level of the attached moiety, for example the methylation in the C5 position of 
m5C4447 or guanine modification in the N7 (for instance, in class III modifi-
cations: m7G1605, xp7G3880, m2xp7G4371 and m7G4550) or O6 position (for 
instance, xp6G1574, m6G4185 and xe6G4355) (Fig. 2c and Extended Data Fig. 8). In 
this context, it is remarkable to observe a series of nucleotides that are modified at 
the oxygen position, which is unusual for RNA (O6 in guanosine and O4 in uridine; 
for instance, xp4U1348, xp6G1574, xp4U1659, xp4U4194, m6G4185 and xe6G4355; 
Fig. 2c and Extended Data Fig. 8). Modifications at rRNA m5C sites have functional 
implications, such as in translational fidelity and tRNA recognition71. For example, 
m5C3782 forms a universally conserved tertiary stacking at the inter-subunit bridge 
B3 (Fig. 2g), and is crucial for subunit stability68,69. A similar modification at the 
PTC, m5C4447, affects ribosome synthesis and processing69.

HYG is located in proximity to Cm1703 (human-specific), m3U1830, m6A1832, 
m6

2A1850 and m6
2A1851 (18S rRNA; Fig. 4b). Consideration of these interactions, 

and comparison to the E. coli ribosome complex with HYG54 could be used to 
create antibiotics with increased specificity. The interactions observed in the E site 
close to the CHX binding site suggest that rRNA modifications have a role in tRNA  
recognition at the E site. This hypothesis is supported by the presence of Ψ3715 
and Am3718 (helix H68 in 28S rRNA), which are located near the tRNA acceptor 
stem of the E site (the phosphate backbone of Ψ3715 interacts with the ribose 
moieties of the tRNA bases C4 and A5). The additional group at the N2 position 
of m2xp7G4371 generates a hydrophobic contact with the glutarimide moiety of 
CHX in the vicinity of the 2′-O-methyl group of Gm4370 (Fig. 4c, d). Finally, 
several other known inhibitor binding pockets comprise modified nucleotides. 
For example, on the basis of modelling analysis based on the present structure of 
the human ribosome, blasticidin binds next to Cm3909 (60S), on the opposite face 
to HHT; geneticin and HYG share the same binding pocket containing m3Ψ1830 
(40S); like CHX, lactimidomycin and phyllanthoside bind next to Gm4370 and 

m2xp7G4371 (60S); and edeine would bind adjacent to the modified m3U1830 and 
m2A1832 in the mRNA channel.
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Extended Data Figure 1 | Particle sorting scheme. The initial dataset 
(top) was sorted into two main 3D classes (+/− rotated) and particles 
of the non-rotated state were either split further, depending on whether 

tRNA is bound to the E site (absence of tRNA means CHX is bound), or 
subjected to focused refinement of the 60S subunit and the 40S subunit 
head and body parts.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 2 | Focused refinement and resolution 
estimation. a, Focused refinement of the 60S subunit and the 40S 
subunit head and body regions (left, entire 80S complex; right, central 
section). b, Sections through the individually refined regions during 

focused refinement (the individually refined areas are sharp, whereas the 
other regions are less ordered). c, Individually refined regions in the 80S 
structure. d, Resolution estimation from the FSC curves.
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Extended Data Figure 3 | Representative regions in the 60S and 40S ribosomal subunits. a–d, Cryo-EM map and atomic model of various regions in 
the 60S subunit. e–h, Cryo-EM map and atomic model of various regions in the 40S subunit.
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Extended Data Figure 4 | Register shift examples in previously less ordered rRNA regions. a–f, Comparison of the previous map and previous atomic 
model23 (top), with the new map and the previous model (middle), and the new map with the refined atomic model after correction of register shifts.
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Extended Data Figure 5 | Specific features in the human ribosome 
structure. a–c, Reannotation of an rRNA region as a ribosomal protein 
(eL29). d, Protein modifications on two lysine residues. e–h, Analysis 
of rRNA modifications in the 5.8S rRNA including sub-stoichiometric 

modification of Um14. i, j, Comparisons of neighbouring residues with 
and without rRNA modifications (human 60S and 40S ribosomal subunits, 
respectively).
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Extended Data Figure 6 | Annotation of chemical modifications in the 60S ribosomal subunit. Conserved sites in E. coli and human large ribosomal 
subunits (magenta), predicted and found sites (cyan), unpredicted 2′-O-Me modification sites (blue), unpredicted base modification sites (red) and a 
5.8S rRNA modification (green).
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Extended Data Figure 7 | Detailed views of the chemical modifications 
in the 60S ribosomal subunit (class I and class II). Individual 
modification sites in classes I and II (magenta and cyan, respectively; 

cyan arrows indicate 2′-O-ribose methylations, black arrows indicate Ψs 
validated through the specific hydrogen-bond pattern, other modifications 
are indicated with magenta arrows).
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Extended Data Figure 8 | Detailed views of the chemical modifications in the 60S ribosomal subunit (class III). Individual modification sites in class 
III (red; arrow colours as in Extended Data Fig. 7).
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Extended Data Figure 9 | Annotation of chemical modifications in the 40S ribosomal subunit. Conserved sites in E. coli and human (magenta), 
predicted and found sites (cyan), unpredicted 2′-O-Me modification sites (blue) and unpredicted base modification sites (red).
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Extended Data Figure 10 | Detailed views of the chemical modifications in the 40S ribosomal subunit (classes I, II and III). Individual modification 
sites in classes I, II and III (in magenta, cyan and red, respectively; arrow colours as in Extended Data Fig. 7).
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Extended Data Figure 11 | rRNA modifications in E. coli and human ribosomal subunits. a, Large ribosomal subunit (left, E. coli; right, human).  
b, Small ribosomal subunit (left, E. coli; right, human).
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extended data table 1 | data, statistics and classification of rrNA modifications

a, Table containing data collection and atomic model refinement statistics. b, Number of rRNA modifications in each class.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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