High-resolution structures of the human ribosome to decipher the molecular basis of snoRNAs dysfunction in disease

Pellegrino Simone, PhD

Alan J. Warren's group Cambridge Institute for Medical Research University of Cambridge

EUNet-Innochron - 27th January 2022

Credit: Paul Emsley/MRC Laboratory of Molecular Biology

J. Mahamid, MPI of Biochemistry

Ribosome assembly in eukaryotes

Process is conserved in humans.

However, > 300 assembly factors and > 400 small nucleolar RNAs (snoRNAs) involved.

Greber, *RNA* (2016)

Is the ribosome one and only?

Several sources of ribosome heterogeneity.

Identified during development, response to stress, cell cycle and in disease states.

Small nucleolar ribonucleoproteins (snoRNPs)

Lo Monaco et al., Biomolecules (2018).

Penzo & Montanaro, *Biomolecules* (2018).

Fibrillarin deregulation and Dyskerin mutations have been associated to disease states.

rRNA modifications: epigenetic control of translation

N¹-methyladenosine (m¹A) N⁷-methylguanosine (m⁷G) N⁶.N⁶-dimethyladenosine (m⁶₂A)

Pseudouridine (Ψ) N³-methyluridine (m³U)

Barros-Silva, RNA Biology (2015)

Hypothesis: differential regulation of translation is dependent on ribosome heterogeneity.

Ribosome specialization in acute myeloid leukaemia

snoRD42A is upregulated in AML.

Pauli et al. *Blood* (2020)

Ribosome specialisation in acute myeloid leukaemia

snoRD42A is upregulated in AML.

SnoRD42A KO reduces colony forming capacity in AML.

How can we spot such a small chemical modification on such a big target (the ribosome)?

On the way to visualise specialized ribosomes

EUNet-Innochron - 27th January 2022

2D

2D classes for iteration 20 [png] [pdf]						
19532 ptcls	17382 ptcls	16686 ptcls	16564 ptcls	15663 ptcls	14805 ptcls	14729 ptcls
and the	1000	ANRIA L	Salat		dillo	345
State State		States of		190		
	Countries -		80.0	1000	- Marine	Conten
3.4 A 1 ess	3.4 A 1 ess	3.4 A 1 ess	3.4 A 1 ess	3.4 A 1 ess	3.4 A 1 ess	3.4 A 1 ess
12969 ptcls	12967 ptcls		11963 ptcls	11804 ptcls	10662 ptcls	10636 ptcls
	1000	1994	125.4	100	1000	and the second second
					100	
	Card Star			Sec. 1		Sec. (559)
3.4 A 1 ess	3.4 A 1 ess	3.4 A 1 ess	3.4 A 1 ess	3.4 A 1 ess	6.0 A 1 ess	6.0 A 1 ess
10030 ptcls	9911 ptcls		9511 ptcls	9351 ptcls	9113 ptcls	9112 ptcls
1000	distant.	100	- Selfin	State State	. Salarian	-5600-
100	Carlos and	-		1000	1.1.1	1000
5.9 A 1 ess	3.4 A 1 ess		6.0 A 1 ess	3.4 A 1 ess	3.4 A 1 ess	6.0 A 1 ess

Cryo-EM reconstruction of human 40S

Pellegrino et al., BioRxiv (2022)

uS14

Visualization of rRNA modifications

Regulated during mouse brain development (Hebras et al., 2020).

Reduced in Dyskeratosis congenita patients (Bellodi et al., 2013).

ES9S

Lack of ψ863 alters translation fidelity (McMahon et al., 2019).

Differentially methylated in breast cancer (Marcel

et al., 2020).

Pellegrino et al., *BioRxiv* (2022)

We visualised with great accuracy 73 out of 91 rRNA modifications.

Lay the basis for investigating differential expression of snoRNAs and defects in incorporation.

EUNet-Innochron - 27th January 2022

Chemical modifications shape structure and function of ribosome.

rRNA modifications surrounding the 40S functional sites, such as decoding centre

Several others embedded within the core: function in rRNA maturation and folding.

Several modifications positioned in proximity of binding platform for translation factors.

Pellegrino et al., *BioRxiv* (2022)

Regulation of translation initiation and elongation

Pellegrino et al., **BioRxiv** (2022)

h14 constitutes an anchoring point for translation factors on the 40S. Deletion of snoRD14 (C_m 462) impairs leukaemogenesis *in vivo* (Zhou et al., *Nat Cell Bio* 2017).

Additionally, h14 regulates aa-tRNA selection process (McClory et al., **RNA** 2010)

m⁷G1639 participates in the process of translocation during protein synthesis.

Stand-alone enzyme: WBSCR22. Loss of modification causes pre-rRNA processing defects.

Visualization of PTMs

Post-translational modifications on ribosomal proteins can have structural roles to promote folding of partially unstructured N-term loops.

Others may be driving the formation of particular structural motifs.

Pellegrino et al., BioRxiv (2022)

lsa138

EUNet-Innochron - 27th January 2022

Ser64

Hvp62

Gln61

uS12

Conclusions and perspectives

Developed a pipeline to achieve close to 2 Å resolution reconstructions of human 40S.

High-resolution reconstruction allowed to visualise ~ 80% rRNA modifications.

Four PTMs visualised: establish additional contacts with neighbouring residues.

Paves the way to understand the basis of ribosome specialisation in fine-tuning translation.

Shed new light on the molecular consequences of snoRNAs differential expression in disease states.

Acknowledgements

The Warren lab

Lab members

Ahmed Boukerrou Alexandre Faille Christine Hilcenko Vassileios Kargas Maxim Rossman Aurora Siniscalchi Tobias Spikes Shengjiang Tan David Traynor

Cryo-EM facility

Dima Chirgadze Lee Cooper Steven Hardwick

Former lab members

Kyle Dent

Blood cancer UK

The \mathscr{R} ay \mathscr{R} endall leukaemia fund

